
Parallel Programming in Futhark
Release 0.80

Martin Elsman Troels Henriksen Cosmin E. Oancea

Nov 22, 2023

Department of Computer Science (DIKU)
University of Copenhagen

mael@di.ku.dk
athas@di.ku.dk

cosmin.oancea@di.ku.dk

Contents

1 Preface 1
1.1 Contributing to the Book . 1
1.2 Acknowledgments . 2

2 Introduction 3
2.1 Structure of the Book . 5

3 The Futhark Language 7
3.1 Basic Language Features . 9
3.2 Array Operations . 15
3.3 Size Types . 19
3.4 Records . 24
3.5 Parametric Polymorphism . 26
3.6 Higher-Order Functions . 28
3.7 Sequential Loops . 30
3.8 In-Place Updates . 33

4 Practical Matters 37
4.1 Testing and Debugging . 37
4.2 Benchmarking . 42
4.3 Package Management . 46
4.4 When Things Go Wrong . 49

5 Modules 51
5.1 Simple Modules . 51
5.2 Modules and files . 53
5.3 Module Types . 54
5.4 Parametric Modules . 56

6 Interoperability 59
6.1 Calling Futhark from Python . 59
6.2 Calling Futhark from C . 61
6.3 Handling Awkward Futhark Types . 64

i

7 A Parallel Cost Model for Futhark Programs 67
7.1 Futhark - the Language . 68
7.2 Futhark Type System . 69
7.3 Futhark Evaluation Semantics . 73
7.4 Work and Span . 74
7.5 Reduction by Contraction . 76
7.6 Radix-Sort by Contraction . 77
7.7 Counting Primes . 79

8 Fusion and List Homomorphisms 81
8.1 Fusion . 81
8.2 Parallel Utility Functions . 82
8.3 Radix Sort Revisited . 83
8.4 Finding the Longest Streak . 84

9 Regular Flattening 87
9.1 Segmented Scan . 87
9.2 Replicated Iota . 89
9.3 Segmented Replicate . 90
9.4 Segmented Iota . 90
9.5 Indexes to Flags . 90
9.6 Moderate Flattening . 91

10 Pseudo-Random Numbers and Monte Carlo Sampling Methods 95
10.1 Generating Pseudo-Random Numbers . 95
10.2 Low-Discrepancy Sequences . 97

11 Irregular Flattening 99
11.1 Flattening by Expansion . 99
11.2 Drawing Lines . 100
11.3 Drawing Triangles . 103
11.4 Primes by Expansion . 105
11.5 Complex Flattening . 105

12 Conclusion 109

Bibliography 111

ii

Chapter 1
Preface

Welcome to “Parallel Programming in Futhark”, an introductory book about the Futhark program-
ming language. Futhark is a data-parallel array programming language that uses the vocabulary of
functional programming to provide a parallel programming model that is easy to understand, yet
can be compiled to very efficient code by an optimising compiler. Futhark is a small language - it is
not designed to replace general-purpose languages for application programming. The intended use
case is that Futhark is only used for the small but compute-intensive parts of an application, as the
Futhark compiler generates code that can be easily called from non-Futhark code. The language
was originally developed in Denmark, and is therefore named after the runic alphabet.

This book is written for a reader who already has some programming experience. Prior experience
with functional programming is useful, but not required. We will be learning Futhark through small
examples that each aim to demonstrate some feature or facet of the language. Furthermore, we will
discuss some of the theoretical background of data-parallel programming, as well as elaborate on
some of the optimisations that can be expected from the compiler.

1.1 Contributing to the Book

The book is Open Source, maintained on Github, and distributed under the Creative Commons
Attribution (By) 4.0 license. All code snippets in the book, including code in the book’s repository
directory is distributed under the ISC license. We will appreciate pull-requests for fixing any kinds
of typos and errors in the text and in the enclosed programs, or making any other improvement.
The book’s main repository is https://github.com/diku-dk/futhark-book.

1

https://en.wikipedia.org/wiki/Elder_Futhark
https://github.com/diku-dk/futhark-book

Parallel Programming in Futhark, Release 0.80

1.2 Acknowledgments

This work has been partially supported by the Danish Strategic Research Council, Program Com-
mittee for Strategic Growth Technologies, for the research center HIPERFIT: Functional High Per-
formance Computing for Financial Information Technology (hiperfit.dk) under contract number
10-092299. The work has also been supported by Independent Research Fund Denmark as part of
the project Functional Technology for High-performance Architectures (FUTHARK).

When citing this work, please use this BibTeX entry.

2 Chapter 1. Preface

hiperfit.dk
https://dff.dk/
_static/book.bib

Chapter 2
Introduction

In 1965, Gordon E. Moore predicted a doubling every year in the number of components in an
integrated circuit [Moo65]. He revised the prediction in 1975 to a doubling every two year [Moo75]
and later revisions suggest a slight decrease in the growth rate, while the growth rate, here 50 years
after Moore’s first prediction, is not seriously predicted to fade out in the next decade. In the
first many years, the increase in components per chip area, as predicted by “Moore’s law”, had
a direct influence on processor speed. The personal computer was getting popular and software
providers were happy beneficials of the so-called “free lunch”, which made programs running on
single Central Processing Units (CPUs) double in speed whenever new processors hit the market.

The days of the “free lunches” for sequentially written programs is over. The physical speed limit for
sequential processing units has pretty much been reached. Increases in processor clock frequency
introduces heat problems that are difficult to deal with and chip providers have instead turned their
focus on providing multiple cores in the same chip. Thus, for programs to run faster on ever new
architectures, programs will have to make use of algorithms and data structures that benefit from
simultaneous, that is parallel, execution on multiple cores. Newer architectures, such as Graphical
Processing Units (GPUs), host a high number of cores that are designed for parallel processing and
over the coming decade, we will see a drastic increase in the number of cores hosted in each chip.

In this book we distinguish between the notions of parallelism and concurrency. By concurrency, we
refer to programming language controls for coordinating work done by multiple virtual processes.
Such processes may in principle run on the same physical processor (using for instance time slicing)
or they may run on multiple processors. Controlling the communication and dependencies between
multiple processes turns out to be immensely difficult and programmers need to deal with problems
such as unforeseen non-determinism and dead-locks, collectively named race conditions, issues that
emerge when two or more processes (and their interaction with an external environment) interleave.
By parallelism, on the other hand, we simply refer to the notion of speeding up a program by
making it run on multiple processors. Given a program, we can analyze the program to discover
dependencies between units of computation and as such, the program contains all the information
there is to know about to which degree the program can be executed in parallel. We emphasize
here the notion that a parallel program should result in the same output given an input no-matter

3

Parallel Programming in Futhark, Release 0.80

how many processors are used for executing the program. On the other hand, we hope that running
the program in parallel with multiple processors will execute faster than if only one processor is
used. As we shall see, making predictable models for determining whether a given program will
run efficiently on a parallel machine can be difficult, in particular in cases where the program is
inhomogeneously parallel at several levels, simultaneously.

Parallelism can be divided into the notions of task parallelism, which emphasizes the concept of
executing multiple independent tasks in parallel, and data parallelism, which focuses on executing
the same program on a number of different data objects in parallel. At the hardware side, multiple
instruction multiple data (MIMD) processor designs, coined after Flynn’s taxonomy [Fly72], di-
rectly allow for different tasks to be executed in parallel. For such designs, each processor is quite
complex and in terms of fitting most processors on a single chip, so as to increase overall through-
put, vendors have increasing success with simpler chip designs for which compute units execute
single instructions on multiple data (SIMD). Such processor designs have turned out to be useful
for a large number of application domains, including graphics processing, machine learning, image
analysis, financial algorithms, and many more. In particular, for graphics processing, chip design-
ers have since the 1970’es developed the concept of graphics processing units (GPUs), which, in
the later years, have turned into “general purpose” graphics processing units (GPGPUs).

The notions of parallel processing and parallel programming are not new. Concepts in these areas
have emerged over a period of more than three decades and today the notion of parallelism appears
in many disguises. For example, the internet as we know it can be understood as a giant parallel
processing unit and whenever some user is browsing and searching the internet, a large number of
processing units are working in parallel to provide the user with the best information available on
the topic. At all levels, software engineers need to know how to exploit the ever increasing amount
of computational resources.

For many years, programmers and engineers have been accustomed to the simple performance rea-
soning principles of the von Neumann machine model [vN45], which is also often referred to as
the sequential Random Access Machine (RAM) model. With ever more complex chip circuits,
introducing speculative instruction scheduling and advanced memory cache hierarchies for lever-
aging the far from constant-time access to random memory, reasoning about performance has be-
come difficult even for programs running on sequential hardware. The consequence is that, even
for sequential programs, programmers and engineers are requesting better models for predicting
performance. For programs designed to run on parallel hardware, the situation is often worse. Un-
derstanding the performance aspects of executing a task-parallel program on a MIMD architecture
can quickly become an immensely complex task in particular because the programmer can be forced
to reason about concurrency aspects of the program running on the MIMD architecture. Machines
are becoming more complex and the abstractions provided by the simpler machine models seem
broken as the models no longer can be used to reason, in a predictable way, about performance. One
particular instance of this problem is the assumption in the shared memory PRAM model, which
assumes that all processors have constant-time access to random memory.

Low-level languages and frameworks that more or less directly mirror their parallel target archi-
tectures include OpenCL [GHK+11] and CUDA [NBGS08] for data-parallel GPU programming.
More abstract approaches to target parallel hardware include library-based approaches, such as
CUBLAS for GPU-targeted linear algebra routines, and annotation-based approaches, such as Ope-

4 Chapter 2. Introduction

Parallel Programming in Futhark, Release 0.80

nAcc for targeting GPUs and OpenMP for targeting multi-core platforms.

Instead of requiring programmers to reason about programs based on a particular machine model,
an alternative is to base performance reasoning on more abstract language based cost models, which
are models that emphasize higher-level programming language concepts and functionalities. By in-
troducing such an abstraction layer, programmers will no longer need to “port” their performance
reasoning whenever a new parallel machine is targeted. It will instead be up to the language imple-
mentor to port the language to new architectures.

The introduction of language based cost models is of course not a silver bullet, but they may help
isolate the assumptions under which performance reasoning is made. Guy Blelloch’s seminal work
on NESL [Ble90, BHS+94] introduces a cost model based on the concept of work, which, in abstract
terms, defines a notion of the total work done by a program, and the concept of steps, which defines
a notion of the number of dependent parallel steps that the program will take, assuming an infinite
number of processors.

In this book we shall make use of a performance cost model for a subset of a data-parallel language
and discuss benefits and limitations of the approach. The cost model is based on the language-
based cost model developed for NESL, but in contrary to the cost model for NESL, we shall not
base our reasoning on an automatic flattening technique for dealing with nested parallelism. Instead,
we shall require the programmer to perform certain kinds of flattening manually. The cost model
developed for Futhark has been adapted from the cost model developed for the SPARC parallel
functional programming language developed for the Carnegie Mellon University (CMU) Fall 2016
course “15-210: Parallel and Sequential Data Structures and Algorithms” [Org16].

We shall primarily look at parallelism from a data-parallel functional programming perspective.
The development in the book is made through the introduction of the Futhark data-parallel func-
tional language [Hen17, HEO14, HLO16, HO14, HO13, HSE+17, LH17], which readily will gen-
erate GPU-executable code for a Futhark program by compiling the program into a number of
OpenCL kernels and coordinating host code for spawning the kernels. Besides the OpenCL back-
end, Futhark also features a C backend and Futhark has been demonstrated to compile quite complex
data-parallel programs into well-performing GPU code [ABegotB+16, HDU+16].

2.1 Structure of the Book

The book is organised in chapters. In Section 3, we introduce the Futhark language, including its
basic syntax, the semantics of the core language, and the built-in array second-order array combi-
nators and their parallel semantics. We also describe how to compile and execute Futhark programs
using both the sequential C backend and the parallel GPU backend. Finally, we describe Futhark’s
module system, which allows for programmers to organise code into reusable components that carry
no overhead whatsoever, due to Futhark’s aggressive strategy of eliminating all module system con-
structs at compile time [Els99, EHAO18]. We also describe Futhark’s support for parametric poly-
morphism and restricted form of higher-order functions, which provide programmers with excellent
tooling for writing abstract reusable code.

2.1. Structure of the Book 5

Parallel Programming in Futhark, Release 0.80

In Section 4 we discuss various practical matters related to Futhark programming. We discuss
techniques for checking the correctness of Futhark programs using unit tests, demonstrate how to
debug Futhark programs using the Futhark debugger, show how to benchmark Futhark programs
(on both CPU and GPU hardware), and give suggestions of how to resolve issues that may occur
when writing programs in Futhark. We also show how to use the Futhark package manager to
download libraries of Futhark code.

In Section 6, we describe how Futhark can be used in concert with Python, to develop, for instance,
interactive, real time games. We also outline the possibilities for using Futhark in the context of C
and .NET programming.

In Section 7, we introduce an “ideal” cost model for the Futhark language based on the notions of
work and span. We present both a type system for an idealized version of Futhark and present a
dynamic semantics for the language. The dynamic semantics is used for deriving the notions of
work and span.

In Section 8, we present to the reader the underlying algebraic reasoning principles that lie behind
the Futhark internal fusion technology. We also present to the reader a series of parallel utility func-
tions and demonstrate the usefulness of applying the list-homomorphism theorem [Bir87], which
forms the basis of map-reduce reasoning and which, in many cases, turns out to play an important
role for implementing efficient data-parallel algorithms in Futhark.

In Section 9, we present Futhark’s way of dealing with nested regular parallelism. In this chapter, we
also introduce a number of segmented operations, including the essential segmented scan operation,
which turns out to be central to both Futhark’s moderate flattening technique and as a central tool
for programmers to flatten irregular data-parallel problems.

Futhark allows for programmers to organise and distribute libraries and applications in Futhark
packages, which may be organised, managed, and documented using Futhark’s package manager
and Futhark’s documentation tool. These tools are described in the Futhark User’s Guide available
at https://futhark.readthedocs.io/en/latest/. In Section 10, we show how to program with pseudo-
random numbers in Futhark using the Futhark package cpprandom. This package allows for gen-
erating pseudo-random numbers in parallel and further allows the programmer to generate random
samples for a number of distributions, including uniform and normal distributions. In the chapter,
we also present the Futhark package sobol, which allows for generating Sobol numbers efficiently
in parallel. This library is useful for stochastic modeling and for Monte Carlo Simulation in high-
dimensional spaces.

In Section 11, we describe the necessary tooling and building blocks for implementing irregular
data-parallel algorithms in Futhark.

In Section 12, we conclude and give directions for further reading.

6 Chapter 2. Introduction

https://futhark.readthedocs.io/en/latest/

Chapter 3
The Futhark Language

Futhark is a pure functional data-parallel array language. It is both syntactically and conceptually
similar to established functional languages, such as Haskell and Standard ML. In contrast to these
languages, Futhark focuses less on expressivity and elaborate type systems, and more on compi-
lation to high-performance parallel code. Futhark programs are written with bulk operations on
arrays, called Second-Order Array Combinators (SOACs), that mirror the higher-order functions
found in conventional functional languages: map, reduce, filter, and so forth. In Futhark, the
parallel SOACs have sequential semantics but permit parallel execution, and will typically be com-
piled to parallel code.

The primary idea behind Futhark is to design a language that has enough expressive power to con-
veniently express complex programs, yet is also amenable to aggressive optimisation and paralleli-
sation. The tension is that as the expressive power of a language grows, the difficulty of efficient
compilation rises likewise. For example, Futhark supports nested parallelism, despite the complex-
ities of efficiently mapping it to the flat parallelism supported by hardware, as many algorithms
are awkward to write with just flat parallelism. On the other hand, we do not support non-regular
arrays, as they complicate size analysis a great deal. The fact that Futhark is purely functional
is intended to give an optimising compiler more leeway in rearranging the code and performing
high-level optimisations.

Programming in Futhark feels similar to programming in other functional languages. If you know
languages such as Haskell, OCaml, Scala, or Standard ML, you will likely be able to read and
modify most Futhark code. For example, this program computes the dot product Σ𝑖𝑥𝑖 · 𝑦𝑖 of two
vectors of integers:

def main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

In Futhark, the notation for an array of element type t is []t. The program defines a function called
main that takes two arguments, both integer arrays, and returns an integer. The main function first
computes the element-wise product of its two arguments, resulting in an array of integers, then
computes the sum of the elements in this new array.

7

Parallel Programming in Futhark, Release 0.80

If we save the program in a file dotprod.fut, we can compile it to a binary dotprod by running:

$ futhark c dotprod.fut

A Futhark program compiled to an executable will read the arguments to its main function from
standard input, and will print the result to standard output:

$ echo [2,2,3] [4,5,6] | ./dotprod
36i32

In Futhark, an array literal is written with square brackets surrounding a comma-separated sequence
of elements. Integer literals can be suffixed with a specific type. This is why dotprod prints 36i32,
rather than just 36 - this makes it clear that the result is a 32-bit integer. Later we will see examples
of when these suffixes are useful.

The futhark c compiler we used above translates a Futhark program into sequential code run-
ning on the CPU. This can be useful for testing, and will work on most systems, even those with-
out GPUs. However, it wastes the main potential of Futhark: fast parallel execution. We can in-
stead use the futhark opencl compiler to generate an executable that offloads execution via the
OpenCL framework. In principle, this allows offloading to any kind of device, but the futhark
opencl compilation pipelines makes optimisation assumptions that are oriented towards contem-
porary GPUs. Use of futhark opencl is simple, assuming your system has a working OpenCL
setup:

$ futhark opencl dotprod.fut

Execution is just as before:

$ echo [2,2,3] [4,5,6] | ./dotprod
36i32

In this case, the workload is small enough that there is little benefit in parallelising the execution.
In fact, it is likely that for this tiny dataset, the OpenCL startup overhead results in several orders
of magnitude slowdown over sequential execution. In Section 4.2 we will discuss how to measure
the performance of our programs.

The ability to compile Futhark programs to executables is useful for testing, but it should be noted
that it is not how Futhark is intended to be used in practice. As a pure functional array language,
Futhark is not capable of reading input or managing a user interface, and as such cannot be used as
a general-purpose language. Futhark is intended to be used for small, performance-sensitive parts
of larger applications, typically by compiling a Futhark program to a library that can be imported
and used by applications written in conventional languages. We’ll return to this in Section 6.

As compiled Futhark executables are intended for testing, they take a range of command line options
to manipulate their behaviour and print debugging information. These will be introduced as needed.

For most of this book, we will be making use of the interactive Futhark interpreter, futhark repl,
which provides a Futhark REPL into which you can enter arbitrary expressions and declarations:

8 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

$ futhark repl
|// |\ | |\ |\ /
|/ | \ |\ |\ |/ /
| | \ |/ | |\ \
| | \ | | | \ \
Version 0.21.2.
Copyright (C) DIKU, University of Copenhagen, released under the ISC␣
→˓license.

Run :help for a list of commands.

[0]> 1 + 2
3i32
[1]>

The prompts are numbered to permit error messages to refer to previous inputs. We will generally
elide the numbers in this book, and just write the prompt as > (do not confuse this with the Unix
prompt, which we write as $).

futhark repl supports a variety of commands for inspecting and debugging Futhark code. These
will be introduced as necessary, in particular in Section 4.1. There is also a batch-mode counterpart
to futhark repl, called futhark run, which non-interactively executes the given program in the
interpreter.

3.1 Basic Language Features

As a functional or value-oriented language, the semantics of Futhark can be understood entirely by
how values are constructed, and how expressions transform one value to another. As a statically
typed language, all Futhark values are classified by their type. The primitive types in Futhark are the
signed integer types i8, i16, i32, i64, the unsigned integer types u8, u16, u32, u64, the floating-
point types f32, f64, and the boolean type bool. An f32 is always a single-precision float and a
f64 is a double-precision float.

Numeric literals can be suffixed with their intended type. For example, 42i8 is of type i8, and
1337e2f64 is of type f64. If no suffix is given, the type is inferred by the context. In case of
ambiguity, integral literals are given type i32 and decimal literals are given f64. Boolean literals
are written as true and false.

Note: converting between primitive values

Futhark provides a collection of functions for performing straightforward conversions between
primitive types. These are all of the form to.from. For example, i32.f64 converts a value of
type f64 (double-precision float) to a value of type i32 (32-bit signed integer), by truncating the

3.1. Basic Language Features 9

Parallel Programming in Futhark, Release 0.80

fractional part:

> i32.f64 2.1
2

> f64.i32 2
2.0

Technically, i32.f64 is not the name of the function. Rather, this is a reference to the function
f64 in the module i32. We will not discuss modules further until Section 5, so for now it suffices
to think of i32.f64 as a function name. The only wrinkle is that if a variable with the name i32
is in scope, the entire i32 module becomes inaccessible by shadowing.

Futhark provides shorthand for the most common conversions:

r32 == f32.i32
t32 == i32.f32
r64 == f64.i32
t64 == i64.f32

All values can be combined in tuples and arrays. A tuple value or type is written as a sequence of
comma-separated values or types enclosed in parentheses. For example, (0, 1) is a tuple value
of type (i32,i32). The elements of a tuple need not have the same type – the value (false, 1,
2.0) is of type (bool, i32, f64). A tuple element can also be another tuple, as in ((1,2),(3,
4)), which is of type ((i32,i32),(i32,i32)). A tuple cannot have just one element, but empty
tuples are permitted, although they are not very useful — these are written () and are of type ().
Records exist as syntactic sugar on top of tuples, and will be discussed in Section 3.4.

An array value is written as a sequence of comma-separated values enclosed in square brackets:
[1,2,3]. An array type is written as [d]t, where t is the element type of the array, and d is an
integer indicating the size. We often elide d, in which case the size will be inferred. As an example,
an array of three integers could be written as [1,2,3], and has type [3]i32. An empty array is
written simply as [], although the context must make the type of an empty array unambiguous.

Multi-dimensional arrays are supported in Futhark, but they must be regular, meaning that all in-
ner arrays have the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type
[3][2]i32, but [[1,2], [3,4,5], [6,7]] is not, because there we cannot determine integers
m and n such that [m][n]i32 is the type of the array. The restriction to regular arrays is rooted in
low-level concerns about efficient compilation, but we can understand it in language terms by the
inability to write a type with consistent dimension sizes for an irregular array value. In a Futhark
program, all array values, including intermediate (unnamed) arrays, must be typeable. We will
return to the implications of this restriction in later chapters.

10 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.1.1 Simple Expressions

The Futhark expression syntax is mostly conventional ML-derived syntax, and supports the usual
binary and unary operators, with few surprises. Futhark does not have syntactically significant in-
dentation, so feel free to put white space whenever you like. This section will not try to cover the
entire Futhark expression language in complete detail. See the reference manual for a comprehen-
sive treatment.

Function application is via juxtaposition. For example, to apply a function f to a constant argument,
we write:

f 1.0

We will discuss defining our own functions in Section 3.1.2.

A let-expression can be used to give a name to the result of an expression:

let z = x + y
in body

Futhark is eagerly evaluated (unlike Haskell), so the expression for z will be fully evaluated before
body. The keyword in is optional when it precedes another let. Thus, instead of writing:

let a = 0 in
let b = 1 in
let c = 2 in
a + b + c

we can write

let a = 0
let b = 1
let c = 2
in a + b + c

The final in is still necessary. In examples, we will often skip the body of a let-expression if it is
not important. A limited amount of pattern matching is supported in let-bindings, which permits
tuple components to be extracted:

let (x,y) = e -- e must be of some type (t1,t2)

This feature also demonstrates the Futhark line comment syntax — two dashes followed by a space.
Block comments are not supported.

Two-way if-then-else is the main branching construct in Futhark:

3.1. Basic Language Features 11

http://futhark.readthedocs.io

Parallel Programming in Futhark, Release 0.80

if x < 0 then -x else x

Pattern matching with the match keyword will be discussed later.

Arrays are indexed using conventional row-major notation, as in the expression a[i1, i2, i3,
...]. All array accesses are checked at runtime, and the program will terminate abnormally if an
invalid access is attempted. Indices are of type i64, though any signed type is permitted in an index
expression (it will be casted to an i64).

White space is used to disambiguate indexing from application to array literals. For example, the
expression a b [i] means “apply the function a to the arguments b and [i]”, while a b[i]
means “apply the function a to the argument b[i]”.

Futhark also supports array slices. The expression a[i:j:s] returns a slice of the array a from
index i (inclusive) to j (exclusive) with a stride of s. If the stride is positive, then i <= j must
hold, and if the stride is negative, then j <= i must hold. Slicing of multiple dimensions can be
done by separating with commas, and may be intermixed freely with indexing. Note that unlike
array indices, slice indices can only be of type i64.

Some syntactic sugar is provided for concisely specifying arrays of intervals of integers. The ex-
pression x...y produces an array of the integers from x to y, both inclusive. The upper bound can
be made exclusive by writing x..<y. For example:

> 1...3
[1i32, 2i32, 3i32]
> 1..<3
[1i32, 2i32]

It is usually necessary to enclose a range expression in parentheses, because they bind very loosely.
A stride can be provided by writing x..y...z, with the interpretation “first x, then y, up to z”. For
example:

> 1..3...7
[1i32, 3i32, 5i32, 7i32]
> 1..3..<7
[1i32, 3i32, 5i32]

The element type of the produced array is the same as the type of the integers used to specify the
bounds, which must all have the same type (but need not be constants). We will be making frequent
use of this notation throughout this book.

Note: structural equality

The Futhark equality and inequality operators == and != are overloaded operators, just like +. They
work for types built from basic types (e.g., i32), array types, tuple types, and record types. The
operators are not allowed on values containing sub-values of abstract types or function types.

12 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

Notice that Futhark does not support a notion of type classes [PJ93] or equality types [Els98].
Allowing the equality and inequality operators to work on values of abstract types could potentially
violate abstraction properties, which is the reason for the special treatment of equality types and
equality type variables in the Standard ML programming language.

3.1.2 Top-Level Definitions

A Futhark program consists of a sequence of top-level definitions, which are primarily function
definitions and value definitions. A function definition has the following form:

def name params... : return_type = body

A function may optionally declare its return type and the types of its parameters. If type annota-
tions are not provided, the types are inferred. As a concrete example, here is the definition of the
Mandelbrot set iteration step 𝑍𝑛+1 = 𝑍2

𝑛 + 𝐶, where 𝑍𝑛 is the actual iteration value, and 𝐶 is the
initial point. In this example, all operations on complex numbers are written as operations on pairs
of numbers. In practice, we would use a library for complex numbers.

def mandelbrot_step ((Zn_r, Zn_i): (f64, f64))
((C_r, C_i): (f64, f64))

: (f64, f64) =
let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

Or equivalently, without specifying the types:

def mandelbrot_step (Zn_r, Zn_i)
(C_r, C_i) =

let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

It is generally considered good style to specify the types of the parameters and the return value when
defining top-level functions. Type inference is mostly used for local and anonymous functions,
which we will get to later.

We can define a constant with very similar notation:

def name: value_type = definition

For example:

3.1. Basic Language Features 13

Parallel Programming in Futhark, Release 0.80

def physicists_pi: f64 = 4.0

Top-level definitions are declared in order, and a definition may refer only to those names that have
been defined before it occurs. This means that circular and recursive definitions are not permitted.
We will return to function definitions in Section 3.3 and Section 3.5, where we will look at more
advanced features, such as parametric polymorphism and implicit size parameters.

Note: Loading files into futhark repl

At this point you may want to start writing and applying functions. It is possible to do this directly in
futhark repl, but it quickly becomes awkward for multi-line functions. You can use the :load
command to read declarations from a file:

> :load test.fut
Loading test.fut

The :load command will remove any previously entered declarations and provide you with a clean
slate. You can reload the file by running :load without further arguments:

> :load
Loading test.fut

Emacs users may want to consider futhark-mode, which is able to load the file being edited into
futhark repl with C-c C-l, and provides other useful features as well.

Exercise: Simple Futhark programming

This is a good time to make sure you can actually write and run a Futhark program on your system.
Write a program that contains a function main that accepts as input a parameter x : i32, and
returns x if x is positive, and otherwise the negation of x. Compile your program with futhark c
and verify that it works, then try with futhark opencl.

Solution

def main (x: i32): i32 = if x < 0 then -x else x

14 Chapter 3. The Futhark Language

https://github.com/diku-dk/futhark-mode

Parallel Programming in Futhark, Release 0.80

Type abbreviations

The previous definition of mandelbrot_step accepted arguments and produced results of type
(f64,f64), with the implied understanding that such pairs of floats represent complex numbers.
To make this clearer, and thus improve the readability of the function, we can use a type abbreviation
to define a type complex:

type complex = (f64, f64)

We can now define mandelbrot_step as follows:

def mandelbrot_step ((Zn_r, Zn_i): complex)
((C_r, C_i): complex)

: complex =
let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

Type abbreviations are purely a syntactic convenience — the type complex is fully interchangeable
with the type (f64, f64):

> type complex = (f64, f64)
> def f (x: (f64, f64)): complex = x
> f (1,2)
(1.0f64, 2.0f64)

For abstract types, that hide their definition, we have to use the module system discussed in Section
5.

3.2 Array Operations

Futhark provides various combinators for performing bulk transformations of arrays. Judicious
use of these combinators is key to getting good performance. There are two overall categories:
first-order array combinators, like zip, that always perform the same operation, and second-order
array combinators (SOACs), like map, that take a functional argument indicating the operation to
perform. SOACs are the basic parallel building blocks of Futhark programming. While they are
designed to resemble familiar higher-order functions from other functional languages, they have
some restrictions to enable efficient parallel execution.

We can use zip to transform two arrays to a single array of pairs:

> zip [1,2,3] [true,false,true]
[(1i32, true), (2i32, false), (3i32, true)]

3.2. Array Operations 15

Parallel Programming in Futhark, Release 0.80

Notice that the input arrays may have different types. We can use unzip to perform the inverse
transformation:

> unzip [(1,true),(2,false),(3,true)]
([1i32, 2i32, 3i32], [true, false, true])

The zip function requires the two input arrays to have the same length. This is verified statically,
by the type checker, using rules we will discuss in Section 3.3.

Transforming between arrays of tuples and tuples of arrays is common in Futhark programs, as
many array operations accept only one array as input. Due to a clever implementation technique,
zip and unzip usually have no runtime cost (they are fused into other operations), so you should
not shy away from using them out of efficiency concerns. For operating on arrays of tuples with
more than two elements, there are zip/unzip variants called zip3, zip4, etc, up to zip5/unzip5.

Now let’s take a look at some SOACs.

3.2.1 Map

The simplest SOAC is probably map. It takes two arguments: a function and an array. The function
argument can be a function name, or an anonymous function. The function is applied to every
element of the input array, and an array of the result is returned. For example:

> map (\x -> x + 2) [1,2,3]
[3i32, 4i32, 5i32]

Anonymous functions need not define their parameter- or return types, but you are free to do so in
cases where it aids readability:

> map (\(x:i32): i32 -> x + 2) [1,2,3]
[3i32, 4i32, 5i32]

Partially applying operators is also supported using so-called operator sections, with a syntax taken
from Haskell:

> map (+2) [1,2,3]
[3i32, 4i32, 5i32]

> map (2-) [1,2,3]
[1i32, 0i32, -1i32]

However, note that the following will not work:

[0]> map (-2) [1,2,3]
Error at [0]> :1:5-1:8:

(continues on next page)

16 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

Cannot unify `t2' with type `a0 -> x1' (must be one of i8, i16, i32, i64,␣
→˓u8, u16, u32, u64, f32, f64 due to use at [0]> :1:7-1:7).
When matching type

a0 -> x1
with

t2

This is because the expression (-2) is taken as negative number -2 enclosed in parentheses. In-
stead, we have to write it with an explicit lambda:

> map (\x -> x-2) [1,2,3]
[-1i32, 0i32, 1i32]

There are variants of map, suffixed with an integer, that permit simultaneous mapping of multiple
arrays, which must all have the same size. This is supported up to map5. For example, we can
perform an element-wise sum of two arrays:

> map2 (+) [1,2,3] [4,5,6]
[5i32, 7i32, 9i32]

There is nothing magical about map2 - it is simply a predefined higher-order function that combines
map and zip. If needed, you can define your own variants that go even higher, although the resulting
code is usually not very readable.

Be careful when writing map expressions where the function returns an array. Futhark requires
regular arrays, so this is unlikely to go well:

map (\n -> 1...n) ns

In fact, the type checker will complain and refuse to run this program at all.

We can use map to duplicate many other language constructs. For example, if we have two arrays
xs:[n]i32 and ys:[m]i32 — that is, two integer arrays of sizes n and m — we can concatenate
them using:

map (\i -> if i < n then xs[i] else ys[i-n])
(0..<n+m)

However, it is not a good idea to write code like this, as it hinders the compiler from using high-
level properties to do optimisation. Using map with explicit indexing is usually only necessary
when solving complicated irregular problems that cannot be represented directly.

3.2. Array Operations 17

Parallel Programming in Futhark, Release 0.80

3.2.2 Scan and Reduce

While map is an array transformer, the reduce SOAC is an array aggregator: it uses some function
of type t -> t -> t to combine the elements of an array of type []t to a value of type t. In order
to perform this aggregation in parallel, the function must be associative and have a neutral element
(in algebraic terms, constitute a monoid):

• A function 𝑓 is associative if 𝑓(𝑥, 𝑓(𝑦, 𝑧)) = 𝑓(𝑓(𝑥, 𝑦), 𝑧) for all 𝑥, 𝑦, 𝑧.

• A function 𝑓 has a neutral element 𝑒 if 𝑓(𝑥, 𝑒) = 𝑓(𝑒, 𝑥) = 𝑥 for all 𝑥.

Many common mathematical operators fulfill these laws, such as addition: (𝑥+𝑦)+𝑧 = 𝑥+(𝑦+𝑧)
and 𝑥 + 0 = 0 + 𝑥 = 𝑥. But others, like subtraction, do not. In Futhark, we can use the addition
operator and its neutral element to compute the sum of an array of integers:

> reduce (+) 0 [1,2,3]
6i32

It turns out that combining map and reduce is both powerful and has remarkable optimisation
properties, as we will discuss in Section 8. Many Futhark programs are primarily map-reduce
compositions. For example, we can define a function to compute the dot product of two vectors of
integers:

def dotprod (xs: []i32) (ys: []i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

A close cousin of reduce is scan, often called generalised prefix sum. Where reduce produces
just one result, scan produces one result for every prefix of the input array. This is perhaps best
understood with an example:

scan (+) 0 [1,2,3] == [0+1, 0+1+2, 0+1+2+3] == [1, 3, 6]

Intuitively, the result of scan is an array of the results of calling reduce on increasing prefixes of
the input array. The last element of the returned array is equivalent to the result of calling reduce.
Like with reduce, the operator given to scan must be associative and have a neutral element.

There are two main ways to compute scans: exclusive and inclusive. The difference is that the empty
prefix is considered in an exclusive scan, but not in an inclusive scan. Computing the exclusive +-
scan of [1,2,3] thus gives [0,1,3], while the inclusive +-scan is [1,3,6]. The scan in Futhark
is inclusive, but it is easy to generate a corresponding exclusive scan simply by prepending the
neutral element and removing the last element.

While the idea behind reduce is probably familiar, scan is a little more esoteric, and mostly has
applications for handling problems that do not seem parallel at first glance. Several examples are
discussed in the following chapters.

18 Chapter 3. The Futhark Language

https://en.wikipedia.org/wiki/Monoid

Parallel Programming in Futhark, Release 0.80

3.2.3 Filtering

We have seen map, which permits us to change all the elements of an array, and we have seen
reduce, which lets us collapse all the elements of an array. But we still need something that lets
us remove some, but not all, of the elements of an array. This SOAC is filter, which keeps only
those elements of an array that satisfy some predicate.

> filter (<3) [1,5,2,3,4]
[1i32, 2i32]

The use of filter is mostly straightforward, but there are some patterns that may appear subtle at
first glance. For example, how do we find the indices of all nonzero entries in an array of integers?
Finding the values is simple enough:

> filter (!=0) [0,5,2,0,1]
[5i32, 2i32, 1i32]

But what are the corresponding indices? We can solve this using a combination of indices, zip,
filter, and unzip:

> def indices_of_nonzero (xs: []i32): []i32 =
let xs_and_is = zip xs (indices xs)
let xs_and_is' = filter (\(x,_) -> x != 0) xs_and_is
let (_, is') = unzip xs_and_is'
in is'

> indices_of_nonzero [1, 0, -2, 4, 0, 0]
[0i32, 2i32, 3i32]

Be aware that filter is a somewhat expensive SOAC, corresponding roughly to a scan plus a
map.

The expression indices xs gives us an array of the same size as xs, whose elements are the
indices of xs starting at 0:

> indices [5,3,1]
[0i32, 1i32, 2i32]

3.3 Size Types

Functions on arrays typically impose constraints on the shape of their parameters, and often the
shape of the result depends on the shape of the parameters. Futhark has direct support for expressing
simple instances of such constraints in the type system. Size types have an impact on almost all
other language features, so even though this section will introduce the most important concepts,

3.3. Size Types 19

Parallel Programming in Futhark, Release 0.80

features, and restrictions, the interactions with other features, such as parametric polymorphism,
will be discussed when those features are introduced.

As a simple example, consider a function that packs a single i32 value in an array:

def singleton (x: i32): [1]i32 = [x]

We explicitly annotate the return type to state that this function returns a single-element array. Even
if we did not add this annotation, the compiler would infer it for us.

For expressing constraints among the sizes of the parameters, Futhark provides size parameters.
Consider the definition of dot product we have used so far:

def dotprod (xs: []i32) (ys: []i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

The dotprod function assumes that the two input arrays have the same size, or else the map2 will
fail. However, this constraint is not visible in the written type of the function (although it will have
been inferred). Size parameters allow us to make this explicit:

def dotprod [n] (xs: [n]i32) (ys: [n]i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

The [n] preceding the value parameters (xs and ys) is called a size parameter, which lets us assign
a name to the dimensions of the value parameters. A size parameter must be used at least once in
the type of a value parameter, so that a concrete value for the size parameter can be determined
at runtime. Size parameters are implicit, and need not an explicit argument when the function is
called. For example, the dotprod function can be used as follows:

> dotprod [1,2] [3,4]
11i32

As with singleton, even if we did not explicitly add a size parameter, the compiler would still
automatically infer its existence (any array must have a size), and furthermore infer that xs and ys
must have the same size, as they are passed to map2.

A size parameter is in scope in both the body of a function and its return type, which we can use,
for instance, for defining a function for computing averages:

def average [n] (xs: [n]f64): f64 =
reduce (+) 0 xs / r64 n

Size parameters are always of type i64, and in fact, any i64-typed variable in scope can be used
as a size annotation. This feature lets us define a function that replicates an integer some number
of times:

20 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

def replicate_i32 (n: i64) (x: i32): [n]i64 =
map (_ -> x) (0..<n)

In Section 3.5 we will see how to write a polymorphic replicate function that works for any type.

As a more complicated example of using size parameters, consider multiplying two matrices x and
y. This is only permitted if the number of columns in x equals the number of rows in y. In Futhark,
we can encode this as follows:

def matmult [n][m][p] (x: [n][m]i32, y: [m][p]i32): [n][p]i32 =
map (\xr -> map (dotprod xr) (transpose y)) x

Three sizes are involved, n, m, and p. We indicate that the number of columns in x must match the
number of columns in y, and that the size of the returned matrix has the same number of rows as
x, and the same number of columns as y.

Presently, only variables and constants are legal as size annotations. This restriction means that the
following function definition is not valid:

def dup [n] (xs: [n]i32): [2*n]i32 =
map (\i -> xs[i/2]) (0..<n*2)

Instead, we will have to write it as:

def dup [n] (xs: [n]i32): []i32 =
map (\i -> xs[i/2]) (0..<n*2)

dup is an instance of a function whose return size is not equal to the size of one of its inputs. You
have seen such functions before - the most interesting being filter. When we apply a function
that returns an array with such an anonymous size, the type checker will invent a new name (called
a size variable) to stand in for the statically unknown size. This size variable will be different from
any other size in the program. For example, the following expression would not type check:

[1]> zip (dup [1,2,3]) (dup [3,2,1])
Error at [1]> :1:24-41:
Dimensions "ret7" and "ret12" do not match.

Note: "ret7" is unknown size returned by "doubleup" at 1:6-21.

Note: "ret12" is unknown size returned by "doubleup" at 1:25-40.

Even though we know that the two applications of dup will have the same size at run-time, the type
checker assumes that each application will produce a distinct size. However, the following works:

let xs = dup [1,2,3] in zip xs xs

3.3. Size Types 21

Parallel Programming in Futhark, Release 0.80

Size types have an escape hatch in the form of size coercions, which allow us to change the size of
an array to an arbitrary new size, with a run-time check that the two sizes are actually equivalent.
This allows us to force the previous example to type check:

> zip (dup [1,2,3] :> [6]i32) (dup [3,2,1] :> [6]i32)
[(1i32, 3i32), (1i32, 3i32), (2i32, 2i32),
(2i32, 2i32), (3i32, 1i32), (3i32, 1i32)]

The expression e :> t can be seen as a kind of “dynamic cast” to the desired array type. The
element type and dimensionality must be unchanged - only the size is allowed to differ.

Exercise: Why two coercions?

Do we need two size coercions? Would zip (dup [1,2,3]) (dup [3,2,1] :> [6]i32) be
sufficient?

Solution

No. Each call to dup produces a distinct size that is different from all other sizes (in type theory
jargon, it is “rigid”), which implies it is not equal to the specific size 6.

Exercise: implement i32_indices

Using size parameters, and the knowledge that 0..<x produces an array of size x, implement a
function i32_indices that works as indices, except that the input array must have elements of
type i32? (If you have read ahead to Parametric Polymorphism, feel free to make it polymorphic
as well.)

Solution

def i32_indices [n] (xs: [n]i32) : [n]i64 =
0..<n

22 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.3.1 Sizes and type abbreviations

Size parameters are also permitted in type abbreviations. As an example, consider a type abbrevi-
ation for a vector of integers:

type intvec [n] = [n]i32

We can now use intvec [n] to refer to integer vectors of size n:

def x: intvec [3] = [1,2,3]

A type parameter can be used multiple times on the right-hand side of the definition; perhaps to
define an abbreviation for square matrices:

type sqmat [n] = [n][n]i32

The brackets surrounding [n] and [3] are part of the notation, not the parameter itself, and are
used for disambiguating size parameters from the type parameters we shall discuss in Section 3.5.

Parametric types must always be fully applied. Using intvec by itself (without a size argument)
is an error.

The definition of a type abbreviation must not contain any anonymous sizes. This is illegal:

type vec = []i32

If this was allowed, then we could write a type such as [2]vec, which would hide the fact that there
is an inner size, and thus subvert the restriction to regular arrays. If for some reason we do wish to
hide inner types, we can define a size-lifted type with the type~ keyword:

type~ vec = []i32

This is convenient when we want it to be an implementation detail that the type may contain an
array (and is most useful after we introduce abstract types in Section 5). Size-lifted types come
with a serious restriction: they may not be array elements. If we write down the type [2]vec, the
compiler will complain. Ordinary type abbreviations, defined with type, will sometimes be called
non-lifted types. This distinction is not very important for type abbreviations, but becomes more
important when we discuss polymorphism in Section 3.5.

3.3. Size Types 23

Parallel Programming in Futhark, Release 0.80

3.3.2 The causality restriction

Anonymous sizes have subtle interactions with size inference, which leads to some non-obvious
restrictions. This is a relatively advanced topic that will not show up in simple programs, so you
can skip this section for now and come back to it later.

To see the problem, consider the following function definition:

def f (b: bool) (xs: []i32) =
let a = [] : [][]i32
let b = [filter (>0) xs]
in a[0] == b[0]

The comparison on the last line forces the row size of a and b to be the same, let’s say n. Further,
while the empty array literal can be given any row size, that n must be the size of whatever array is
produced by the filter. But now we have a problem: constructing the empty array requires us to
know the specific value of n, but it is not computed until later! This is called a causality violation:
we need a value before it is available.

This particular case is trivial, and can be fixed by flipping the order in which a and b are bound,
but the ultimate purpose of the causality restriction is to ensure that the program does not contain
circular dependencies on sizes. To make the rules simpler, causality checking uses a specified
evaluation order to determine that a size is always computed before it is used. The evaluation order
is mostly intuitive:

1. Function arguments are evaluated before function values.

2. For let-bindings, the bound expression is evaluated before the body.

3. For binary operators, the left operand is evaluated before the right operand.

Since Futhark is a pure language, this evaluation order does not have any effect on the result of
programs, and may differ from what actually happens at runtime. It is used merely as a piece of type
checking fiction to ensure that some straightforward evaluation order exists, where all anonymous
sizes have been computed before their value is needed.

We will see a more realistic example of the impact of the causality restriction in Section 3.6.1, when
we get to higher-order functions.

3.4 Records

Semantically, a record is a finite map from labels to values. These are supported by Futhark as a
convenient syntactic extension on top of tuples. A label-value pairing is often called a field. As an
example, let us return to our previous definition of complex numbers:

type complex = (f64, f64)

24 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

We can make the role of the two floats clear by using a record instead.

type complex = {re: f64, im: f64}

We can construct values of a record type with a record expression, which consists of field assign-
ments enclosed in curly braces:

def sqrt_minus_one = {re = 0.0, im = -1.0}

The order of the fields in a record type or value does not matter, so the following definition is
equivalent to the one above:

def sqrt_minus_one = {im = -1.0, re = 0.0}

In contrast to most other programming languages, record types in Futhark are structural, not nomi-
nal. This means that the name (if any) of a record type does not matter. For example, we can define
a type abbreviation that is equivalent to the previous definition of complex:

type another_complex = {re: f64, im: f64}

The types complex and another_complex are entirely interchangeable. In fact, we do not need
to name record types at all; they can be used anonymously:

def sqrt_minus_one: {re: f64, im: f64} = {re = 0.0, im = -1.0}

However, for readability purposes it is usually a good idea to use type abbreviations when working
with records.

There are two ways to access the fields of records. The first is by field projection, which is done
by dot notation known from most other programming languages. To access the re field of the
sqrt_minus_one value defined above, we write sqrt_minus_one.re.

The second way of accessing field values is by pattern matching, just like we do with tuples. A
record pattern is similar to a record expression, and consists of field patterns enclosed in curly
braces. For example, a function for adding complex numbers could be defined as:

def complex_add ({re = x_re, im = x_im}: complex)
({re = y_re, im = y_im}: complex)

: complex =
{re = x_re + y_re, im = x_im + y_im}

As with tuple patterns, we can use record patterns in both function parameters, let-bindings, and
loop parameters.

As a special syntactic convenience, we can elide the = pat part of a record pattern, which will bind
the value of the field to a variable of the same name as the field. For example:

3.4. Records 25

Parallel Programming in Futhark, Release 0.80

def conj ({re, im}: complex): complex =
{re = re, im = -im}

This convenience is also present in tuple expressions. If we elide the definition of a field, the value
will be taken from the variable in scope with the same name:

def conj ({re, im}: complex): complex =
{re, im = -im}

3.4.1 Tuples as a Special Case of Records

In Futhark, tuples are merely records with numeric labels starting from 0. For example, the types
(i32,f64) and {0:i32,1:f64} are indistinguishable. The main utility of this equivalence is that
we can use field projection to access the components of tuples, rather than using a pattern in a
let-binding. For example, we can say foo.0 to extract the first component of a tuple.

Notice that the fields of a record must constitute a prefix of the positive numbers for it to be con-
sidered a tuple. The record type {0:i32,2:f64} does not correspond to a tuple, and neither does
{1:i32,2:f64} (but {1:f64,0:i32} is equivalent to the tuple (i32,f64), because field order
does not matter).

3.5 Parametric Polymorphism

Consider the replication function we wrote earlier:

def replicate_i32 (n: i64) (x: i32): [n]i32 =
map (_ -> x) (0..<n)

This function works only for replicating values of type i32. If we wanted to replicate, say, a boolean
value, we would have to write another function:

def replicate_bool (n: i64) (x: bool): [n]bool =
map (_ -> x) (0..<n)

This duplication is not particularly nice. Since the only difference between the two functions is the
type of the x parameter, and we don’t actually use any i32-specific operations in replicate_i32,
or bool-specific operations in replicate_bool, we ought to be able to write a single function that
is parameterised over the element type. In some languages, this is done with generics, or template
functions. In ML-derived languages, including Futhark, we use parametric polymorphism. Just
like the size parameters we saw earlier, a Futhark function may have type parameters. These are
written as a name preceded by an apostrophe. As an example, this is a polymorphic version of
replicate:

26 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

def replicate 't (n: i64) (x: t): [n]t =
map (_ -> x) (0..<n)

Notice how the type parameter binding is written as 't; we use just t to refer to the parametric
type in the x parameter and the function return type. Type parameters may be freely intermixed
with size parameters, but must precede all ordinary parameters. Just as with size parameters, we do
not need to explicitly pass the types when we call a polymorphic function; they are automatically
deduced from the concrete parameters.

We can also use type parameters when defining type abbreviations:

type triple 't = [3]t

And of course, these can be intermixed with size parameters:

type vector 't [n] = [n]t

In contrast to function definitions, the order of parameters in a type does matter. Hence, vector
i32 [3] is correct, and vector [3] i32 would produce an error.

We might try to use parametric types to further refine our previous definition of complex numbers,
by making it polymorphic in the representation of scalar numbers:

type complex 't = {re: t, im: t}

This type abbreviation is fine, but we will find it difficult to write useful functions with it. Consider
an attempt to define complex addition:

def complex_add 't ({re = x_re, im = x_im}: complex t)
({re = y_re, im = y_im}: complex t)

: complex t =
{re = ?, im = ?}

How do we perform an addition x_re and y_re? These are both of type t, of which we know
nothing. For all we know, they might be instantiated to something that is not numeric at all. Hence,
the Futhark compiler will prevent us from using the + operator. In some languages, such as Haskell,
facilities such as type classes may be used to support a notion of restricted polymorphism, where we
can require that an instantiation of a type variable supports certain operations (like +). Futhark does
not have type classes, but it does support programming with certain kinds of higher-order functions
and it does have a powerful module system. The support for higher-order functions in Futhark and
the module system are the subjects of the following sections.

3.5. Parametric Polymorphism 27

Parallel Programming in Futhark, Release 0.80

3.6 Higher-Order Functions

Futhark supports certain kinds of higher-order functions. For performance reasons, certain restric-
tions apply, which means that Futhark can eliminate higher-order functions at compile time through
a technique called defunctionalisation [Hov18, HHE18]. From a programmer’s point-of-view, the
main restrictions are the following:

1. Functions may not be stored inside arrays.

2. Functions may not be returned from branches in conditional expressions.

3. Functions are not allowed in loop parameters.

Whereas these restrictions seem daunting, functions may still be grouped in records and tuples
and such structures may be passed to functions and even returned by functions. In effect, quite
a few functional design patterns may be applied, ranging from defining polymorphic higher-order
functions, for the purpose of obtaining a high degree of abstraction and code reuse (e.g., for defining
program libraries), to specific uses of higher-order functions for representing various concepts as
functions. Examples of such uses include a library for type-indexed compact serialisation (and
deserialisation) of Futhark values [Els05, Ken04] and encoding of Conal Elliott’s functional images
[Ell03].

We have seen earlier how anonymous functions may be constructed and passed as arguments to
SOACs. Here is an example anonymous function that takes parameters x, y, and z, returns a value
of type t, and has body e:

\x y z: t -> e

Futhark allows for the programmer to specify so-called sections, which provide a way to form
implicit eta-expansions of partially applied operations. Sections are encapsulated in parentheses.
Assuming binop is a binary operator, such as +, the section (binop) is equivalent to the expression
\x y -> x binop y. Similarly, the section (x binop) is equivalent to the expression \y -> x
binop y and the section (binop y) is equivalent to the expression \x -> x binop y.

For making it easy to select fields from records (and tuples), a select-section may be used. An
example is the section (.a.b.c), which is equivalent to the expression \y -> y.a.b.c. Similarly,
the example section (.[i]), for indexing into an array, is equivalent to the expression \y -> y[i].

At a high level, Futhark functions are values, which can be used as any other values. However,
to ensure that the Futhark compiler is able to compile the higher-order functions efficiently via
defunctionalisation, certain type-driven restrictions exist on how functions can be used, as described
earlier. Moreover, for Futhark to support higher-order polymorphic functions, type variables, when
bound, are divided into non-lifted (bound with an apostrophe, e.g. 't), and lifted (bound with an
apostrophe and a hat, e.g. '^t). Only lifted type parameters may be instantiated with a functional
type. Within a function, a lifted type parameter is treated as a functional type. All abstract types
declared in modules (see Section 5) are considered non-lifted, and may not be functional.

Uniqueness typing (see Section 3.8) generally interacts poorly with higher-order functions. The

28 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

issue is that there is no way to express, in the type of a function, how many times a function argument
is applied, or to what, which means that it will not be safe to pass a function that consumes its
argument. The following two conservative rules govern the interaction between uniqueness types
and higher-order functions:

1. In the expression let p = e in ..., if any in-place update takes place in the expression
e, the value bound by p must not be or contain a function.

2. A function that consumes one of its arguments may not be passed as a higher-order argument
to another function.

A number of higher-order utility functions are available at top-level. Amongst these are the follow-
ing quite useful functions:

val const '^a '^b : a -> b -> a -- constant function
val id '^a : a -> a -- identity function
val |> '^a '^b : a -> (a -> b) -> b -- pipe right
val <| '^a '^b : (a -> b) -> a -> b -- pipe left

val >-> '^a '^b '^c : (a -> b) -> (b -> c) -> a -> c
val <-< '^a '^b '^c : (b -> c) -> (a -> b) -> a -> c

val curry '^a '^b '^c : ((a,b) -> c) -> a -> b -> c
val uncurry '^a '^b '^c : (a -> b -> c) -> (a,b) -> c

3.6.1 Causality and piping

The causality restriction discussed in Section 3.3.2 has significant interaction with higher-order
functions, particularly the pipe operators. Programmers familiar with other languages, in particular
Haskell, may wish to use the <| operator frequently, due to its similarity to Haskell’s $ operator.
Unfortunately, it has pitfalls due to causality. Consider this expression:

length <| filter (>0) [1,-2,3]

This is a causality violation. The reason is that length has the following type scheme:

val length [n] 't : [n]t -> i64

This means that whenever we use length, the type checker must instantiate the size variable nwith
some specific size, which must be available at the place length itself occurs. In the expression
above, this specific size is whatever anonymous size variable the filter application produces.
However, since the rule for binary operators is left-to-right evaluation, length function is instan-
tiated (but not applied!) before the filter runs. The distinction between instantiation, which is
when a polymorphic value is given its concrete type, and application, which is when a function is
provided with an argument, is crucial here. The end result is that the compiler will complain:

3.6. Higher-Order Functions 29

Parallel Programming in Futhark, Release 0.80

> length <| filter (>0) [1,-2,3]
Error at [1]> :1:1-6:
Causality check: size "ret11" needed for type of "length":

[ret11]i32 -> i64
But "ret11" is computed at 1:11-30.
Hint: Bind the expression producing "ret11" with 'let' beforehand.

The compiler suggests binding the filter expression with a let, which forces it to be evaluated
first, but there are neater solutions in this case. For example, we can exploit that function arguments
are evaluated before function is instantiated:

> length (filter (>0) [1,-2,3])
2i64

Or we can use the left-to-right piping operator:

> filter (>0) [1,-2,3] |> length
2i64

3.7 Sequential Loops

Futhark does not directly support recursive functions, but instead provides syntactical sugar for
expressing the equivalent of certain tail-recursive functions. Consider the following hypothetical
tail-recursive formulation of a function for computing the Fibonacci numbers

def fibhelper(x: i32, y: i32, n: i32): i32 =
if n == 1 then x else fibhelper(y, x+y, n-1)

def fib(n: i32): i32 = fibhelper(1,1,n)

We cannot write this directly in Futhark, but we can express the same idea using the loop construct:

def fib(n: i32): i32 =
let (x, _) = loop (x, y) = (1,1) for i < n do (y, x+y)
in x

The semantics of this loop is precisely as in the tail-recursive function formulation. In general, a
loop

loop pat = initial for i < bound do loopbody

has the following semantics:

1. Bind pat to the initial values given in initial.

30 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

2. Bind i to 0.

3. While i < bound, evaluate loopbody, rebinding pat to be the value returned by the body.
At the end of each iteration, increment i by one.

4. Return the final value of pat.

Semantically, a loop-expression is completely equivalent to a call to its corresponding tail-recursive
function.

For example, denoting by t the type of x, the loop

loop x = a for i < n do
g(x)

has the semantics of a call to the following tail-recursive function:

def f(i: i32, n: i32, x: t): t =
if i >= n then x
else f(i+1, n, g(x))

-- the call
let x = f(i, n, a)
in body

The syntax shown above is actually just syntactical sugar for a common special case of a for-in loop
over an integer range, which is written as:

loop pat = initial for xpat in xs do loopbody

Here, xpat is an arbitrary pattern that matches an element of the array xs. For example:

loop acc = 0 for (x,y) in zip xs ys do
acc + x * y

The purpose of the loop syntax is partly to render some sequential computations slightly more
convenient, but primarily to express certain very specific forms of recursive functions, specifically
those with a fixed iteration count. This property is used for analysis and optimisation by the Futhark
compiler. In contrast to most functional languages, Futhark does not properly support recursion,
and users are therefore required to use the loop syntax for sequential loops.

Apart from for-loops, Futhark also supports while-loops. These loops do not provide as much
information to the compiler, but can be used for convergence loops, where the number of iterations
cannot be predicted in advance. For example, the following program doubles a given number until
it exceeds a given threshold value:

def main (x: i32, bound: i32): i32 =
loop x while x < bound do x * 2

3.7. Sequential Loops 31

Parallel Programming in Futhark, Release 0.80

In all respects other than termination criteria, while-loops behave identically to for-loops.

For brevity, the initial value expression can be elided, in which case an expression equivalent to the
pattern is implied. This feature is easier to understand with an example. The loop

def fib (n: i32): i32 =
let x = 1
let y = 1
let (x, _) = loop (x, y) = (x, y) for i < n do (y, x+y)
in x

can also be written:

def fib (n: i32): i32 =
let x = 1
let y = 1
let (x, _) = loop (x, y) for i < n do (y, x+y)
in x

This style of code can sometimes make imperative code look more natural.

Note: Type-checking with futhark repl

If you are uncertain about the type of some Futhark expression, the :type command (or :t for
short) can help. For example:

> :t 2
2 : i32

> :t (+2)
(+ 2) : i32 -> i32

You will also be informed if the expression is ill-typed:

[1]> :t true : i32
Error at [1]> :1:1-1:10:
Couldn't match expected type `i32' with actual type `bool'.
When matching type
i32

with
bool

32 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.8 In-Place Updates

While Futhark is an uncompromisingly pure functional language, it may occasionally prove useful
to express certain algorithms in an imperative style. Consider a function for computing the 𝑛 first
Fibonacci numbers:

def fib (n: i64): [n]i32 =
-- Create "empty" array.
let arr = replicate n 1
-- Fill array with Fibonacci numbers.
in loop (arr) for i < n-2 do

arr with [i+2] = arr[i] + arr[i+1]

The notation arr with [i+2] = arr[i] + arr[i+1] produces an array equivalent to arr, but
with a new value for the element at position i+2. A shorthand syntax is available for the common
case where we immediately bind the array to a variable of the same name:

let arr = arr with [i+2] = arr[i] + arr[i+1]

-- Can be shortened to:

let arr[i+2] = arr[i] + arr[i+1]

If the array arr were to be copied for each iteration of the loop, we would spend a lot of time
moving around data, even though it is clear in this case that the ”old” value of arr will never be
used again. Precisely, what should be an algorithm with complexity 𝑂(𝑛) would become 𝑂(𝑛2),
due to copying the size 𝑛 array (an 𝑂(𝑛) operation) for each of the 𝑛 iterations of the loop.

To prevent this copying, Futhark updates the array in-place, that is, with a static guarantee that
the operation will not require any additional memory allocation, or copying the array. An in-place
update can modify the array in time proportional to the elements being updated (𝑂(1) in the case
of the Fibonacci function), rather than time proportional to the size of the final array, as would the
case if we perform a copy. In order to perform the update without violating referential transparency,
Futhark must know that no other references to the array exists, or at least that such references will
not be used on any execution path following the in-place update.

In Futhark, this is done through a type system feature called uniqueness types, similar to, although
simpler than, the uniqueness types of the programming language Clean. Alongside a (relatively)
simple aliasing analysis in the type checker, this extension is sufficient to determine at compile time
whether an in-place modification is safe, and signal a compile time error if in-place updates are used
in a way where safety cannot be guaranteed.

The simplest way to introduce uniqueness types is through examples. To that end, let us consider
the following function definition.

3.8. In-Place Updates 33

Parallel Programming in Futhark, Release 0.80

def modify (a: *[]i32) (i: i64) (x: i32): *[]i32 =
a with [i] = a[i] + x

The function call modify a i x returns 𝑎, but where the element at index i has been increased
by 𝑥. Notice the asterisks: in the parameter declaration (a: *[i32]), the asterisk means that the
function modify has been given “ownership” of the array 𝑎, meaning that any caller of modifywill
never reference array 𝑎 after the call again. In particular, modify can change the element at index
i without first copying the array, i.e. modify is free to do an in-place modification. Furthermore,
the return value of modify is also unique - this means that the result of the call to modify does not
share elements with any other visible variables.

Let us consider a call to modify, which might look as follows.

let b = modify a i x

Under which circumstances is this call valid? Two things must hold:

1. The type of a must be *[]i32, of course.

2. Neither a or any variable that aliases a may be used on any execution path following the call
to modify.

When a value is passed as a unique-typed argument in a function call, we say that the value is
consumed, and neither it nor any of its aliases (see below) can be used again. Otherwise, we would
break the contract that gives the function liberty to manipulate the argument however it wants.
Notice that it is the type in the argument declaration that must be unique - it is permissible to
pass a unique-typed variable as a non-unique argument (that is, a unique type is a subtype of the
corresponding nonunique type).

A variable 𝑣 aliases 𝑎 if they may share some elements, for instance by an overlap in memory. As
the most trivial case, after evaluating the binding b = a, the variable b will alias a. As another
example, if we extract a row from a two-dimensional array, the row will alias its source:

let b = a[0] -- b is aliased to a
-- (assuming a is not one-dimensional)

Most array combinators produce fresh arrays that initially alias no other arrays in the program. In
particular, the result of map f a does not alias a. One exception is array slicing, where the result
is aliased to the original array.

Let us consider the definition of a function returning a unique array:

def f(a: []i32): *[]i32 = e

Notice that the argument, a, is non-unique, and hence we cannot modify it inside the function.
There is another restriction as well: a must not be aliased to our return value, as the uniqueness
contract requires us to ensure that there are no other references to the unique return value. This

34 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

requirement would be violated if we permitted the return value in a unique-returning function to
alias its (non-unique) parameters.

To summarise: values are consumed by being the source in a in-place binding, or by being passed
as a unique parameter in a function call. We can crystallise valid usage in the form of three principal
rules:

Uniqueness Rule 1 When a value is consumed — for example, by being passed in the place of a
unique parameter in a function call, or used as the source in a in-place expression, neither that
value, nor any value that aliases it, may be used on any execution path following the function
call. A violation of this rule is as follows:

let b = a with [i] = 2 -- Consumes 'a'
in f(b,a) -- Error: a used after being consumed

Uniqueness Rule 2 If a function definition is declared to return a unique value, the return value
(that is, the result of the body of the function) must not share memory with any non-unique
arguments to the function. As a consequence, at the time of execution, the result of a call to
the function is the only reference to that value. A violation of this rule is as follows:

def broken (a: [][]i32, i: i64): *[]i32 =
a[i] -- Error: Return value aliased with 'a'.

Uniqueness Rule 3 If a function call yields a unique return value, the caller has exclusive access
to that value. At the point the call returns, the return value may not share memory with
any variable used in any execution path following the function call. This rule is particularly
subtle, but can be considered a rephrasing of Uniqueness Rule 2 from the “calling side”.

It is worth emphasising that everything related to uniqueness types is implemented as a static analy-
sis. All violations of the uniqueness rules will be discovered at compile time (during type-checking),
leaving the code generator and runtime system at liberty to exploit them for low-level optimisation.

3.8.1 When To Use In-Place Updates

If you are used to programming in impure languages, in-place updates may seem a natural and
convenient tool that you may use frequently. However, Futhark is a functional array language, and
should be used as such. In-place updates are restricted to simple cases that the compiler is able to
analyze, and should only be used when absolutely necessary. Most Futhark programs are written
without making use of in-place updates at all.

Typically, we use in-place updates to efficiently express sequential algorithms that are then mapped
on some array. Somewhat counter-intuitively, however, in-place updates can also be used for ex-
pressing irregular nested parallel algorithms (which are otherwise not expressible in Futhark), albeit
in a low-level way. The key here is the array combinator scatter, which writes to several posi-
tions in an array in parallel. Suppose we have an array is of type [n]i32, an array vs of type [n]t

3.8. In-Place Updates 35

Parallel Programming in Futhark, Release 0.80

(for some t), and an array as of type [m]t. Then the expression scatter as is vs morally
computes

for i in 0..n-1:
j = is[i]
v = vs[i]
if (j >= 0 && j < length as)
then { as[j] = v }
else { }

and returns the modified as array. The old as array is marked as consumed and may not be used
anymore. Notice that writing outside the index domain of the target array has no effect.

Moreover, identical indices in is (that are valid indices into the target array) are required to map to
identical values; otherwise, the result is unspecified. In particular, it is not guaranteed that one of
the duplicate writes will complete atomically; they may be interleaved. Futhark features a function,
called reduce_by_index (a generalised histogram operation), which can handle this case deter-
ministically. The parallel scatter operation can be used, for instance, to implement efficiently the
radix sort algorithm, as demonstrated in Section 7.6.1.

36 Chapter 3. The Futhark Language

Chapter 4
Practical Matters

The previous chapter introduced the Futhark language, the notion of parallel programming, and the
most fundamental builtin functions. However, more knowledge is needed to write real high-quality
Futhark programs. This chapter discusses various practicalities around Futhark programming: how
to test and debug your code (Section 4.1), how to benchmark it once it works (Section 4.2), how
to use the Futhark package manager to access library code (Section 4.3), and finally how to work
around compiler limitations.

4.1 Testing and Debugging

This section discusses techniques for checking the correctness of Futhark programs via unit tests,
as well as the debugging facilities provided by futhark repl.

The testing experience for Futhark is still rather raw. There are no advanced unit testing frameworks,
no test generators or doc-testing, and certainly no property-based testing. Instead, we have futhark
test, which tests entry point functions against input/output example pairs. However, it is better
than nothing, and quite simple to use. futhark testwill test the program with both the interpreter
and a compiler backend (futhark c by default, but this can be changed with --backend).

4.1.1 Testing with futhark test

A Futhark program may contain a test block, which is a sequence of line comments in which one of
the lines contains the divider -- ==. The lines preceding the divider are ignored, while the lines
after are taken as a description of a test to perform. When futhark test is passed one or more
.fut files, it will look for test blocks and perform the tests they describe.

As an example, let us consider how to test a function for matrix multiplication. Suppose that we
have the following defined in a file matmul.fut:

37

Parallel Programming in Futhark, Release 0.80

entry matmul [n][m][p] (x: [n][m]i32) (y: [m][p]i32): [n][p]i32 =
map (\xr -> map (\yc -> reduce (+) 0 (map2 (*) xr yc))

(transpose y))
x

Note that we use entry instead of def in order for the function to be callable from the outside.

We then add a test block:

-- Matrix multiplication.
-- ==
-- entry: matmul

The first line is a human-readable description, the second is the divider, and the third specifies the
entry point that we wish to test. If the entry point is main, this part can be elided.

We now come to the input/output sets, which are written as follows:

-- input { [[1, 2]] [[3], [4]] }
-- output { [[11]] }
-- input { [[1, 2], [3, 4]] [[5, 6], [7, 8]] }
-- output { [[19, 22], [43, 50]] }
--

The values are enclosed in curly braces, and multiple whitespace-separated values can be given.
Only a limited subset of the Futhark value syntax is supported: Primitive values and multidimen-
sional arrays of primitive values. In particular, no records or tuples are permitted. This subset is
exactly that which is supported by compiled Futhark executables. If you have a need for testing
functions that take more sophisticated input types, you will need to encode them using primitive
types, and then construct them in the test function itself.

It is also possible to write negative tests, where we assert that the program must fail for a given
input. In our case, when the shape of the matrices don’t match up:

--
--

We provide a regular expression matching the expected error. In this case, we just assert that the
error mentions the file name.

Type inference on the input/output values is not performed, so the types must be unambiguous. This
means that the usual [] notation for an empty array will not work. Instead, a special empty(t)
notation is used to represent an array of type t. For example, we can test for empty arrays as such:

-- input { empty([0][0]i32) empty([0][0]i32) }
-- output { empty([0][0]i32) }

38 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

Note also that since plain integer literals are assumed to be of type i32, and plain decimal literals
to be of type f64, you will need to use type suffixes (Section 3.1) to write values of other types.

As a convenience, futhark test considers functions returning n-tuples to really be functions
returning n values. This means we can put multiple values in an output stanza, just as we do with
input.

External Data Files

It is also possible to specify input- and output-data stored in a separate file. This is useful when
testing with very large datasets, in particular when they use the binary data format, which can be
generated with the futhark dataset tool. This is done with the notation @ file:

-- compiled input @ big_matrices.in
-- output @ big_matrices.out

This also shows another feature of futhark test: if we precede input with the word compiled,
that test is not run with the interpreter. This is useful for large tests that would take too long to run
interpreted. By default futhark test does not use the interpreter unless the -i option is passed.
There are more ways to filter which tests and programs should be skipped for a given invocation of
futhark test; see the manual for more information.

Automatically Generated Input

In many cases we are not particularly interested in the specific values of the workload we are bench-
marking, merely its size. Consider again the dot product: what matters is the size of the vectors,
not their contents. This is done with the stanza random input:

-- compiled random input { [100][1000]i32 [1000][100]i32 }

We again use compiled to indicate that this data set should not be used when testing with the inter-
preter. However, instead of containing literal values, as with plain input, the braces enclose types.
When futhark test is given this program, it will first automatically generate data files containing
values of the indicated types and shapes. This is only done once, after which the generated files are
kept in a data/ directory relative to the .fut file. This directory can be freely deleted and will be
repopulated as needed.

As the data file is randomly generated, we cannot in advance know what its expected output might
be. We can use the auto output stanza to ask futhark test to automatically construct an
expected output file before running the program:

-- compiled random input { [100][1000]i32 [1000][100]i32 }
-- auto output

4.1. Testing and Debugging 39

https://futhark.readthedocs.io/en/latest/binary-data-format.html
https://futhark.readthedocs.io/en/latest/man/futhark-test.html

Parallel Programming in Futhark, Release 0.80

The expected output is constructed by running the program compiled with futhark c, and so
is mainly useful for detecting differences between futhark c and one of the parallel backends,
like for example futhark opencl. Such differences can be due to compiler bugs, programmer
mistakes (like passing a non-associative function to reduce), or merely floating-point jitter.

Testing a Futhark Library

A Futhark library typically comprises a number of .fut files means to be include-ed by Futhark
programs. Libraries typically do not define entry points of the form required by futhark test.
Indeed, it is not unusual for Futhark libraries to consist entirely of parametric modules and higher-
order functions! These are not directly accessible to futhark test.

The recommended solution is that, for every library file foo.fut, we define a corresponding
foo_tests.fut that imports foo.fut and defines a number of entry points.

For example, suppose we have sum.fut that contains the sum module from Section 5.4:

module type monoid = {
type t
val add : t -> t -> t
val zero : t

}

module sum (M: monoid) = {
def sum (a: []M.t): M.t =

reduce M.add M.zero a
}

This cannot be tested directly with futhark test, but we can define a sum_tests.fut that can:

import "sum"

-- ==
-- entry: test_sum_add_i32
-- input { [1, 2, 3, 4] }
-- output { 10 }

module sum_add_i32 = sum { type t = i32
def add = (i32.+)
def zero = 0i32

}

entry test_sum_add_i32 = sum_add_i32.sum

-- ==
(continues on next page)

40 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

-- entry: test_sum_prod_f32
-- input { [1f32, 2f32, 3f32, 4f32] }
-- output { 24f32 }

module sum_prod_f32 = sum { type t = f32
def add = (f32.*)
def zero = 1f32

}

entry test_sum_prod_f32 = sum_prod_f32.sum

You will have to use your own judgment when deciding which specific instantiations of a generic
library you feel are worth testing.

4.1.2 Traces and Breakpoints

Testing is useful for determining the correctness of code, but does not in itself pinpoint the source
of bugs. While you can go far simply by structuring your code as small functions that can be tested
in isolation, it is sometimes necessary to inspect internal state and behaviour.

Compiled Futhark code does not possess much in the way of debugging facilities, but the interpreter
(accessed via futhark repl and futhark run) has a couple of useful tools. Since interpretation
is very slow compared to compiled code, this does mean that we can only debug with cut-down
smaller testing sets, not with realistic workloads.

Specifically, we use the two functions trace and break. The trace function has the following
type:

trace 't : t -> t

Semantically, trace just returns its argument unchanged, and when compiling your Futhark code,
this is indeed all that will happen. However, futhark repl and futhark run treat trace spe-
cially, and will print the argument to the screen. This is useful for seeing the value of internal
variables. For example, suppose we have the program trace.fut:

def main (xs: []i32) = map (\x -> trace x + 2) xs

We can then run it with futhark run to get the following output:

$ echo [1,2,3] | futhark run trace.fut
Trace at trace.fut:1:24-1:49: 1i32
Trace at trace.fut:1:24-1:49: 2i32
Trace at trace.fut:1:24-1:49: 3i32
[3i32, 4i32, 5i32]

4.1. Testing and Debugging 41

Parallel Programming in Futhark, Release 0.80

Similarly, the break function is semantically also the identity function:

break 't : t -> t

When the interpreter encounters break, it suspends execution and lets us inspect the variables in
scope. At the moment, this works only when running an expression within futhark repl, not
when using futhark run. Suppose break.fut is:

def main (xs: []i32) = map (\x -> break x + 2) xs

Then we can load and run it from futhark repl:

[1]> main [1,2,3]
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
> x
1i32
>
Continuing...
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
>
Continuing...
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
>
Continuing...
[3i32, 4i32, 5i32]
>

Whenever we are stopped at a break point, we can enter arbitrary Futhark expressions to inspect the
state of the environment. This is useful when operating on complex values.

4.2 Benchmarking

Consider an implementation of the dot product of two integer vectors:

def main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We previously mentioned that, for small data sets, sequential execution is likely to be much faster

42 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

than parallel execution. But how much faster? To answer this question, we need to measure the
run time of the program on some data sets. This task is called benchmarking. There are many
properties one can benchmark: memory usage, size of compiled executable, robustness to errors,
and so forth. In this section, we are only concerned with run time. Specifically, we wish to measure
wall time, which is how much time elapses in the real world from the time the computation starts,
to the time it ends.

There is still some wiggle room in how we benchmark. For example, should we measure the time
it takes to load the input data from disk? Or time it takes to initialise various devices and drivers?
Should we perform a clean shutdown? How many times should we run the program, and should we
report maximum, minimum, or average run time? We will not try to answer all of these questions,
but instead merely describe the benchmarking tools provided by Futhark.

4.2.1 Simple Measurements

First, let us compile dotprod.fut to two different executables, one for each compiler:

$ futhark c dotprod.fut -o dotprod-c
$ futhark opencl dotprod.fut -o dotprod-opencl

One way to time execution is to use the standard time(1) tool:

$ echo [2,2,3] [4,5,6] | time ./dotprod-c
36i32
0.00user 0.00system 0:00.00elapsed ...
$ echo [2,2,3] [4,5,6] | time ./dotprod-opencl
36i32
0.20user 0.07system 0:00.29elapsed ...

It seems that dotprod-c executes in less than 10 milliseconds, while dotprod-opencl takes
about 290 milliseconds. However, this comparison is not useful, as it also measures time taken
to read the input (for both executables), as well as time taken to initialise the OpenCL driver (for
dotprod-opencl). Recall that in a real application, the Futhark program would be compiled as
a library, and the startup cost paid just once, while the program may be invoked multiple times.
A more precise run-time measurement, where parsing, initialisation, and printing of results is not
included, can be performed using the -t command line option, which specifies a file where the
run-time (measured in microseconds) should be put:

$ echo [2,2,3] [4,5,6] | ./dotprod-c -t /dev/stderr > /dev/null
0

In this case, we ask for the runtime to be printed to the screen, and for the normal evaluation result
to be thrown away. Apparently it takes less than one microsecond to compute the dot product of
two three-element vectors on a CPU (this is not very surprising). On an AMD Vega 64 GPU:

4.2. Benchmarking 43

Parallel Programming in Futhark, Release 0.80

$ echo [2,2,3] [4,5,6] | ./dotprod-opencl -t /dev/stderr > /dev/null
103

Over 100 microseconds! Most GPUs have fairly high launch invocation latencies, and so are not
suited for small problems. We can use futhark dataset tool to generate random test data of a
desired size:

$ futhark dataset -g [10000000]i32 -g [10000000]i32 > input

Two ten million element vectors should be enough work to amortise the GPU startup cost:

$ cat input | ./dotprod-opencl -t /dev/stderr > /dev/null
347
$ cat input | ./dotprod-c -t /dev/stderr > /dev/null
3801

That’s more like it! Parallel execution is now more than ten times faster than sequential execution.
This program is entirely memory-bound; on a compute-bound program we can expect much larger
speedups.

You may have noticed that these programs take significantly longer to run than indicated by these
performance measurements. While GPU initialisation does take some time, most of the actual run-
time in the example above is spent reading the data file from disk. By default, futhark dataset
produces output in a data format that is human-readable, but very slow for programs to process.
We can use the -b option to make futhark dataset generate data in an efficient binary format
(which takes up less space on disk as well):

$ futhark dataset -b -g [10000000]i32 -g [10000000]i32 > input

Reading binary data files is often orders of magnitude faster than reading textual input files. Com-
piled Futhark programs also support binary output via a -b option. The futhark dataset tool
can perform conversion between the binary and human-readable formats; see the manual page for
more information.

4.2.2 Multiple Measurements

The technique presented in the previous section still has some problems. In particular, it is imprac-
tical if you want several measurements on the same dataset, which is in general preferable to even
out noise. While you can just repeat execution the desired number of times, this method has two
problems:

1. The input file will be read multiple times, which can be slow for large data sets.

2. It prevents the device from “warming up”, as every run re-initialises the GPU and re-uploads
code.

44 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

The second point is more important than it may seem. Certain OpenCL operations (such as memory
allocation) are relatively costly, and Futhark uses various caches and buffers to minimise the number
of expensive OpenCL operations. However, these caches will all be cold the first time the program
runs. Hence we wish to perform more than one run per program instance, so that we can take
advantage of the warm caches. This method is also a more plausible proxy for real-world usage of
Futhark, as Futhark is typically compiled to a library, where the same functions are called repeatedly
by some client code.

Compiled Futhark executables support an -r N option that asks the program to perform N runs
internally, and report runtime for each. Additionally, a non-measured warm-up run is performed
initially. We can use it like this:

$ cat input | ./dotprod-opencl -t /dev/stderr -r 10 > /dev/null
285
330
281
284
285
278
285
330
284
282

Our runtimes are now much better. And importantly, there are more of them, so we can perform
analyses such as determining the variance, to figure out how predictable the runtime is.

4.2.3 Using futhark bench

However, we can do better still. Futhark comes with a tool for performing automated benchmark
runs of programs, called futhark bench. This tool relies on a specially formatted header com-
ment that contains input/output pairs, exactly like futhark test (see Section 4.1.1). The Futhark
User’s Guide contains a full description, but here is a simple example. First, we introduce a new
program, sumsquares.fut, with smaller data sets for convenience:

-- Given N, compute the sum of squares of the first N integers.
-- ==
-- compiled input { 1000i64 } output { 332833500i64 }
-- compiled input { 1000000i64 } output { 333332833333500000i64 }
-- compiled input { 1000000000i64 } output { 3338615082255021824i64 }

def main (n: i64): i64 =
reduce (+) 0 (map (**2) (iota n))

4.2. Benchmarking 45

https://futhark.readthedocs.org
https://futhark.readthedocs.org

Parallel Programming in Futhark, Release 0.80

The line containing == is used to separate the human-readable benchmark description from input-
output pairs. It is also possible to keep the data set in an external file, or to generate it automatically.
See the manual page for more information.

We can use futhark bench to measure the performance of sumsquares.fut as fol-
lows:

$ futhark bench sumsquares.fut
Compiling src/sumsquares.fut...
Results for src/sumsquares.fut:
dataset #0 ("1000i32"): 0.20us (avg. of 10 runs; RSD: 2.00)
dataset #1 ("1000000i32"): 290.00us (avg. of 10 runs; RSD: 0.03)
dataset #2 ("1000000000i32"): 270154.20us (avg. of 10 runs; RSD: 0.01)

These are measurements using the default compiler, which is futhark c. If we want to see how
our program performs when compiled with futhark opencl, we can invoke futhark bench:

$ futhark bench --backend=opencl sumsquares.fut
Compiling src/sumsquares.fut...
Results for src/sumsquares.fut:
dataset #0 ("1000i32"): 49.70us (avg. of 10 runs; RSD: 0.18)
dataset #1 ("1000000i32"): 44.40us (avg. of 10 runs; RSD: 0.02)
dataset #2 ("1000000000i32"): 1693.80us (avg. of 10 runs; RSD: 0.04)

We can now compare the performance of CPU execution with GPU execution. The tool takes care
of the mechanics of run-time measurements, and even computes the relative standard deviation
(“RSD”) of the measurements for us. The correctness of the output is also automatically checked.
By default, futhark bench performs ten runs for every data set, but this number can be changed
with the --runs command line option. Unless you can articulate a good reason not to, always use
futhark bench for benchmarking.

4.3 Package Management

A Futhark package is a downloadable collection of .fut files and little more. There is a (not neces-
sarily comprehensive) list of known packages. The following discusses only how to use packages.
For authoring your own, please see the corresponding section in the User’s Guide.

46 Chapter 4. Practical Matters

http://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark-lang.org/pkgs
https://futhark.readthedocs.io/en/latest/package-management.html#creating-packages

Parallel Programming in Futhark, Release 0.80

4.3.1 Basic Concepts

A package is uniquely identified with a package path, which is similar to a URL, except without a
protocol. At the moment, package paths are always links to Git repositories hosted on GitHub or
GitLab. As an example, a package path may be github.com/athas/fut-foo.

Packages are versioned with semantic version numbers of the form X.Y.Z. Whenever versions are
indicated, all three digits must always be given (that is, 1.0 is not a valid shorthand for 1.0.0).

Most futhark pkg operations involve reading and writing a package manifest, which is always
stored in a file called futhark.pkg. The futhark.pkg file is human-editable, but is in day-to-day
use mainly modified by futhark pkg automatically. You will normally have one futhark.pkg
file for each of your Futhark projects. Packages are installed in a location relative to the location of
futhark.pkg.

4.3.2 Installing Packages

Required packages can be added by using futhark pkg add, for example:

$ futhark pkg add github.com/athas/fut-foo 0.1.0

This will create a new file futhark.pkg with the following contents:

require {
github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733

}

This lists one required package, with its package path, minimum version, and the expected commit
hash. The latter is used for verification, to ensure that the contents of a package version cannot
silently change.

futhark pkg will perform network requests to determine whether a package of the given name
and with the given version exists and fail otherwise (but it will not check whether the package is
otherwise well-formed). The version number can be elided, in which case futhark pkg will use
the newest available version. If the package is already present in futhark.pkg, it will simply have
its version requirement changed to the one specified in the command. Any dependencies of the
package will not be added to futhark.pkg, but will still be downloaded by futhark pkg sync
(see below).

Adding a package with futhark pkg add modifies futhark.pkg, but does not download the
package files. This is done with futhark pkg sync (without further options). The contents of
each required dependency and any transitive dependencies will be stored in a subdirectory of lib/
corresponding to their package path. Following the earlier example:

$ futhark pkg sync
$ tree lib

(continues on next page)

4.3. Package Management 47

https://semver.org/

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

lib
github.com

athas
fut-foo

foo.fut

3 directories, 1 file

Warning: futhark sync will remove any unrecognized files or local modifications to files in
lib/. Unless you are creating your own package, you should not add anything to the lib/ directory
- it is fully controlled by futhark pkg.

Packages can be removed from futhark.pkg with:

$ futhark pkg remove pkgpath

You will need to run futhark sync to actually remove the files in lib/.

The intended usage is that futhark.pkg is added to version control, but lib/ is not, as the contents
of lib/ can always be reproduced from futhark.pkg. However, adding lib/ works just fine as
well.

4.3.3 Importing Files from Dependencies

futhark pkg sync will populate the lib/ directory, but does not interact with the compiler in
any way. The downloaded files can be imported using the import mechanism (see Section 5.2).
For example, assuming the package contains a file foo.fut, the following top-level declaration
brings all names declared in the file into scope:

import "lib/github.com/athas/fut-foo/foo"

Ultimately, everything boils down to ordinary file system semantics. This has the downside of
relatively long and clumsy import paths, but the upside of predictability.

4.3.4 Upgrading Dependencies

The futhark pkg upgrade command will update every version requirement in futhark.pkg to
be the most recent available version. You still need to run futhark pkg sync to actually retrieve
the new versions. Be careful - while upgrades are safe if semantic versioning is followed correctly,
this is not yet properly machine-checked, so human mistakes may occur.

As an example:

48 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

$ cat futhark.pkg
require {

github.com/athas/fut-foo 0.1.0 #d285563c25c5152b1ae80fc64de64ff2775fa733
}
$ futhark pkg upgrade
Upgraded github.com/athas/fut-foo 0.1.0 => 0.2.1.
$ cat futhark.pkg
require {

github.com/athas/fut-foo 0.2.1 #3ddc9fc93c1d8ce560a3961e55547e5c78bd0f3e
}
$ futhark pkg sync
$ tree lib
lib

github.com
athas

fut-bar
bar.fut

fut-foo
foo.fut

4 directories, 2 files

Note that fut-foo 0.2.1 depends on github.com/athas/fut-bar, so it was fetched by
futhark pkg sync.

futhark pkg upgradewill never upgrade across a major version number. Due to the principle of
Semantic Import Versioning, a new major version is a completely different package from the point
of view of the package manager. Thus, to upgrade to a new major version, you will need to use
futhark pkg add to add the new version and futhark pkg remove to remove the old version.
Or you can keep it around - it is perfectly acceptable to depend on multiple major versions of the
same package, because they are really different packages.

4.4 When Things Go Wrong

Futhark is a young language and an on-going research project, and you should not expect the same
predictability and quality of error messages that you may be used to from more mature languages.
Further, not all Futhark compilers are guaranteed to be able to compile all Futhark programs. In
general, the limitations you will encounter will tend to fall in two categories:

Essential limitations touch upon fundamental restrictions in the target platform(s) for the Futhark
compiler. For example, GPUs do not permit dynamic memory allocation inside GPU code.
All memory must be pre-allocated before GPU programs are launched. This means that the
Futhark compiler must be able to pre-compute the size of all intermediate arrays (symboli-

4.4. When Things Go Wrong 49

https://research.swtch.com/vgo-import

Parallel Programming in Futhark, Release 0.80

cally), or compilation will fail.

Implementation limitations are weaknesses in the Futhark compiler that could reasonably be
solved. Many implementation limitations, such as the inability to pre-compute some array
sizes, or eliminate bounds checks inside parallel sections, will manifest themselves as essen-
tial limitations that could be worked around by a smarter compiler.

For example, consider this program:

def main (n: i32): [][]i32 =
map (\i ->

let a = (0..<i)
let b = (0..<n-i)
in concat a b)

(0..<n)

At the time of this writing, futhark opencl will fail with the not particularly illuminating error
message Cannot allocate memory in kernel. The reason is that the compiler is trying to
compile the map to parallel code, which involves pre-allocating memory for the a and b array. It is
unable to do this, as the sizes of these two arrays depend on values that are only known inside the
map, which is too late. There are various techniques the Futhark compiler could use to estimate
how much memory would be needed, but these have not yet been implemented.

It is usually possible, sometimes with some pain, to come up with a workaround. We could rewrite
the program as:

def main(n: i32): [][]i32 =
let scratch = (0..<n)
in map (\i ->

let res = (0..<n)
let res[i:n] = scratch[0:n-i]
in res)

(0..<n)

This exploits the fact that the compiler does not generate allocations for array slices or in-place
updates. The only allocation is of the initial scratch, the size of which can be computed before
entering the map.

50 Chapter 4. Practical Matters

Chapter 5
Modules

When most programmers think of module systems, they think of rather utilitarian systems for
namespace control and splitting programs across multiple files. And in most languages, the module
system is indeed little more than this. But in Futhark, we have adopted an ML-style higher-order
module system that permits abstraction over modules [EHAO18]. The module system is not just a
method for organising Futhark programs, it is also a powerful facility for writing generic code. Most
importantly, all module language constructs are eliminated from the program at compile time, using
a technique called static interpretation [Ann18, Els99]. As a consequence, from a programmer’s
perspective, there is no overhead involved with making use of module language features.

Each source file is implicitly a module, but we can also define modules inside a file via the module
language. This means we are actually defining nested modules - nested inside the module defined
by the file itself. To understand how modules work, it is useful to ignore their relation to files at
first - in contrast to most other languages, it is mostly incidental, as files are not the foundation of
the Futhark module system.

5.1 Simple Modules

At the most basic level, a module (called a structure in Standard ML) is a collection of declarations:

module add_i32 = {
type t = i32
def add (x: t) (y: t): t = x + y
def zero: t = 0

}

Declarations are value bindings, type bindings, module bindings, and a few other things that are
allowed to occur at the top level.

After the module binding above, add_i32.t is an alias for the type i32, and add_i32.add is a

51

Parallel Programming in Futhark, Release 0.80

function that adds two values of type i32. The only peculiar thing about this notation is the equal
sign before the opening brace. The declaration above is actually a combination of a module binding

module add_i32 = ...

and a module expression

{
type t = i32
def add (x: t) (y: t): t = x + y
def zero: t = 0

}

In this case, the module expression encapsulates a number of declarations enclosed in curly braces.
In general, as the name suggests, a module expression is an expression that returns a module. A
module expression is syntactically and conceptually distinct from a regular value expression, but
serves much the same purpose. The module language is designed such that evaluation of a module
expression can always be done at compile time.

Apart from a sequence of declarations, a module expression can also be merely the name of another
module

module foo = add_i32

Now every name defined in add_i32 is also available in the module foo. At compile-time, only a
single version of the add function is defined, so there is no overhead involved.

As a starting point, every name defined by a declaration inside of a module will be visible outside
that module. We can make a declaration invisible to users of the module by prefixing it with local:

module m = {
local def helper x = x + 2
def f x = helper (helper x)

}

In this contrived example, m.f will be visible, but m.helperwill not. Do not use local to hide the
definitions of types - it will not work. In Section 5.3 we’ll see facilities for making types abstract.

To make the names of a module available without having to prefix the module name, you can use the
open declaration. For example, after the definition above, we can use open m to make the function
f available in the rest of the current module and to users of the current module. This is an important
but somewhat subtle detail:

module m2 = {
open m

}

52 Chapter 5. Modules

Parallel Programming in Futhark, Release 0.80

This makes m2.f available because m exposes a binding f. If you don’t want this behaviour, use
local open.

5.2 Modules and files

While Futhark’s module system is not file oriented, there is still a close interaction. You can access
code in other files as follows:

import "module"

The above declaration will include all non-local top-level definitions from module.fut and make
them available in the current module, but will not make them available to users of the module. The
.fut extension is implied.

You can also include files from subdirectories::

import "path/to/a/file"

The above will include the file path/to/a/file.fut relative to the including file.

If we are defining a top-level function (or any other top-level construct) that we do not want to be
visible outside the current file, we can prefix it with local:

local def i_am_hidden x = x + 2

The above uses import as a declaration. We can also use it as a module expression. This makes
qualified imports possible:

module M = import "module"

In fact, a plain import "module" declaration is equivalent to:

local open import "module"

This declaration opens "module" in the current file, but does not propagate its contents to modules
that in turn import the current file. If we wished to re-export names from another file, we would
say:

open import "module"

5.2. Modules and files 53

Parallel Programming in Futhark, Release 0.80

5.3 Module Types

What we have seen so far is nothing more than a simple namespace mechanism. The ML module
system only becomes truly powerful once we introduce module types and parametric modules (in
Standard ML, these are called signatures and functors).

A module type is the counterpart to a value type. It describes which names are defined, and as
what. We can define a module type that describes add_i32:

module type i32_adder = {
type t = i32
val add : t -> t -> t
val zero : t

}

As with modules, we have the notion of a module type expression. In this case, the module type
expression is a sequence of specifications enclosed in curly braces. A specification specifies how a
name must be defined: as a value (including functions) of some type, as a type abbreviation, or as
an abstract type (which we will return to later).

We can assert that some module implements a specific module type via a module type ascription:

module foo = add_i32 : i32_adder

Syntactic sugar lets us move the module type to the left of the equal sign:

module add_i32: i32_adder = {
...

}

When we are ascribing a module with a module type, the module type functions as a filter, removing
anything not explicitly mentioned in the module type:

module bar = add_i32 : { type t = i32
val zero : t }

An attempt to access bar.add will result in a compilation error, as the ascription has hidden it.
This is known as an opaque ascription, because it obscures anything not explicitly mentioned in the
module type. The module system in Standard ML supports both opaque and transparent ascription,
but in Futhark we support only opaque ascription. This example also demonstrates the use of an
anonymous module type. Module types are structural (just like value types), and are named only
for convenience.

We can use type ascription with abstract types to hide the definition of a type from the users of a
module:

54 Chapter 5. Modules

Parallel Programming in Futhark, Release 0.80

module speeds: { type thing
val car : thing
val plane : thing
val futhark : thing
val speed : thing -> i32 } = {

type thing = i32

def car: thing = 0
def plane: thing = 1
def futhark: thing = 2

def speed (x: thing): i32 =
if x == car then 120
else if x == plane then 800
else if x == futhark then 10001
else 0 -- will never happen

}

The (anonymous) module type asserts that a distinct type thing must exist, but does not mention
its definition. There is no way for a user of the speeds module to do anything with a value of
type speeds.thing apart from passing it to speeds.speed. The definition is entirely abstract.
Furthermore, no values of type speeds.thing exists except those that are created by the speeds
module.

5.3.1 Module type refinement

It is a common pattern to define generic modules with abstract types, that are then specialised or
refined with concrete types. For example, consider a module type describing monoids:

module type monoid = {
type t
val add : t -> t -> t
val zero : t

}

This module type specifies the presence of an abstract type t, as well as a function operating on
values of type t. But in many cases when we define modules implementing this module type, we
don’t want the module to operate on an abstract type. Consider if we did this:

module monoid_i32 = add_i32 : monoid

Now the function monoid_i32.add operates on some abstract type t, rather than on i32, and the
only value of that type that we can access is monoid_i32.zero. This is not particularly useful.

5.3. Module Types 55

Parallel Programming in Futhark, Release 0.80

Instead, what we want to state is that the module implements monoid, but specifically for the case
where t is i32. This can be done with a module type refinement:

module monoid_i32 = add_i32 : monoid with t = i32

Here, monoid with t = i32 is a module type expression that produces another module type. In
this case, the resulting module type is equivalent to monoid, but with t replaced with i32 every-
where. We can also bind the resulting module type to a name if we wish:

module type i32_monoid = monoid with t = i32

This is completely equivalent to writing out the module type in full:

module type i32_monoid = {
type t = i32
val add : i32 -> i32 -> i32
val zero : i32

}

As with all other Futhark types, module types are completely identified by their structure, not their
names. Binding module types to names is done only for brevity. This makes them dissimilar to the
“interfaces” of most other programming languages, which are identified by specific names.

5.4 Parametric Modules

While module types serve some purpose for namespace control and abstraction, their most interest-
ing use is in the definition of parametric modules. A parametric module is conceptually equivalent
to a function. Where a function takes a value as input and produces a value, a parametric module
takes a module and produces a module. For example, we can define a parametric module that ac-
cepts a module satisfying the monoid module type given above, and produces a module containing
a function for collapsing an array

module sum (M: monoid) = {
def sum (a: []M.t): M.t =

reduce M.add M.zero a
}

There is an implied assumption here, which is not captured by the type system: The function add
must be associative and have zero as its neutral element. These constraints come from the parallel
semantics of reduce, and the algebraic concept of a monoid. Notice that in monoid, no definition
is given of the type t—we only assert that there must be some type t, and that certain operations
are defined for it.

We can use the parametric module sum as follows:

56 Chapter 5. Modules

Parallel Programming in Futhark, Release 0.80

module sum_i32 = sum add_i32

We can now refer to the function sum_i32.sum, which has type []i32 -> i32. The type is only
abstract inside the definition of the parametric module. We can instantiate sum again with another
module, this time an anonymous module:

module prod_f64 = sum {
type t = f64
def add (x: f64) (y: f64): f64 = x * y
def zero: f64 = 1.0

}

The function prod_f64.sum has type []f64 -> f64, and computes the product of an array of
numbers (we should probably have picked a more generic name than sum for this function).

Operationally, each application of a parametric module results in its definition being duplicated and
references to the module parameter replace by references to the concrete module argument. This
is quite similar to how C++ templates are implemented. Indeed, parametric modules can be seen
as a simplified variant with no specialisation, and with module types to ensure rigid type checking.
In C++, a template is type-checked when it is instantiated, whereas a parametric module is type-
checked when it is defined.

Parametric modules, like other modules, can contain more than one declaration. This feature is use-
ful for giving related functionality a common abstraction, for example to implement linear algebra
operations that are polymorphic over the type of scalars. The following example uses an anony-
mous module type for the module parameter and the open declaration for bringing the names from
a module into the current scope:

module linalg(M : {
type scalar
val zero : scalar
val add : scalar -> scalar -> scalar
val mul : scalar -> scalar -> scalar

}) = {
open M

def dotprod [n] (xs: [n]scalar) (ys: [n]scalar)
: scalar =
reduce add zero (map2 mul xs ys)

def matmul [n] [p] [m] (xss: [n][p]scalar)
(yss: [p][m]scalar)

: [n][m]scalar =
map (\xs -> map (dotprod xs) (transpose yss)) xss

}

5.4. Parametric Modules 57

Parallel Programming in Futhark, Release 0.80

58 Chapter 5. Modules

Chapter 6
Interoperability

Futhark is a purely functional high-performance language incapable of interacting with the outside
world except through function parameters. This makes it impossible to write full applications in
Futhark, except via the limited standard input-based interface that we used in the preceding chapters.
In practice, this interface is too slow and too inflexible to be useful. Instead, the Futhark compiler
is designed to generate libraries, which can then be invoked by general-purpose languages. In this
chapter we will see how to call Futhark from Python and C, with particular attention paid to the
former.

6.1 Calling Futhark from Python

Python is a language with many qualities, but few would claim that performance is among them.
While libraries such as NumPy can be used, they are not as flexible as being able to write code
directly in a high-performance language. Unfortunately, writing the performance-critical parts of a
Python program in (say) C is not always a good experience, and the interfacing between the Python
code and the C code can be awkward and inelegant (although to be fair, it is still nicer in Python than
in many other languages). It would be more convenient if we could compile a high-performance
language directly to a Python module that we could then import like any other piece of Python
code. Of course, this entire exercise is only worthwhile if the code in the resulting Python module
executes much faster than manually written Python. Fortunately, when most of the computation
can be offloaded to the GPU via OpenCL, the Futhark compiler is capable of this feat.

OpenCL works by having an ordinary program running on the CPU that transmits code and data
to the GPU (or any other accelerator, but we’ll stick to GPUs). In the ideal case, the CPU-code
is mostly glue that performs bookkeeping and making API calls - in other words, not resource-
intensive, and exactly what Python is good at. No matter the language the CPU code is written
in, the GPU code will be written in OpenCL C and translated at program initialisation to whatever
machine code is needed by the concrete GPU.

This is what is exploited by the PyOpenCL backend in the Futhark compiler. Certainly, the CPU-

59

https://mathema.tician.de/software/pyopencl/

Parallel Programming in Futhark, Release 0.80

level code is written in pure Python and quite slow, but all it does is use the PyOpenCL library to
offload work to the GPU. The fact that this offloading takes place is hidden from the user of the
generated code, who is provided a module with functions that accept and produce ordinary NumPy
arrays.

Consider our usual dot product program:

def main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We can compile this to a Python module:

$ futhark pyopencl --library dotprod.fut

The result is a file dotprod.py that we can import from within Python:

$ python
>>> import dotprod

The dotprod.py module defines a class dotprod that we must instantiate. The class maintains
various bits of bookkeeping information, and exposes a method for every entry point in our program
(here just main):

>>> o = dotprod.dotprod()

We will get an error if we try to pass Python lists to the entry point, as lists are not arrays:

>>> o.main([1,2,3], [4,5,6])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "dotprod.py", line 2416, in main
x_mem_3884_ext))

TypeError: Argument #0 has invalid value
Futhark type: []i32
Argument has Python type <type 'list'> and value: [1, 2, 3]

Instead, we have to construct a properly typed NumPy array:

>>> import numpy as np
>>> o.main(np.array([1,2,3], dtype=np.int32),

np.array([4,5,6], dtype=np.int32))
32

The integer that is returned is a normal Python object of an appropriate type (in this case it will have
type np.int32). If an array is returned, it is in the form of a PyOpenCL array, which is mostly
compatible with NumPy arrays, except that the backing memory still resides on the GPU, and is
not copied over to the CPU unless necessary. This makes it efficient to take the output of one entry

60 Chapter 6. Interoperability

https://documen.tician.de/pyopencl/array.html

Parallel Programming in Futhark, Release 0.80

point and pass it as the input to another. PyOpenCL arrays contain a .get() method that can be
used to construct an equivalent NumPy array, if desired.

6.2 Calling Futhark from C

Let us once again consider dotprod.fut:

def main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We can compile it with the futhark opencl compiler:

$ futhark opencl --library dotprod.fut

This produces two files in the current directory: dotprod.c and dotprod.h. We can compile
dotprod.c to a shared library like this:

$ gcc dotprod.c -o libdotprod.so -fPIC -shared

We can now link to libdotprod.so the same way we link with any other shared library. But before
we get that far, let’s take a look at (parts of) the generated dotprod.h file. We have written the code
generator to produce as simple header files as possible, with no superfluous crud, in order to make
them human-readable. This is particularly useful at the moment, since few explanatory comments
are inserted in the header file.

The first declarations are related to initialisation, which is based on first constructing a configuration
object, which can then be used to obtain a context. The context is used in all subsequent calls, and
contains GPU state and the like. We elide most of the functions for setting configuration properties,
as they are not very interesting:

/*
* Initialisation
*/

struct futhark_context_config ;

struct futhark_context_config *futhark_context_config_new();

void futhark_context_config_free(struct futhark_context_config *cfg);

void futhark_context_config_set_device(struct futhark_context_config *cfg,
const char *s);

...
(continues on next page)

6.2. Calling Futhark from C 61

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

struct futhark_context ;

struct futhark_context *futhark_context_new(struct futhark_context_config␣
→˓*cfg);

void futhark_context_free(struct futhark_context *ctx);

int futhark_context_sync(struct futhark_context *ctx);

The above demonstrates a pervasive design decision in the API: the use of pointers to opaque
structs. The struct futhark_context is not given a definition, and the only way to construct it
is via the function futhark_context_new(). This means that we cannot allocate it statically,
which is contrary to how one would normally design a C library. The motivation behind this design
is twofold:

1. It keeps the header file readable, as it elides implementation details like struct members.

2. It is easier to use from FFIs. Most FFIs make it very easy to work with functions that only
accept and produce pointers (and primitive types), but accessing and allocating structs is a
little more involved.

The disadvantage is a little more boilerplate, and a little more dynamic allocation. However, rela-
tively few objects of this kind are used, so the performance impact should be nil.

The next part of the header file concerns itself with arrays - how they are created and accessed:

/*
* Arrays
*/

struct futhark_i32_1d ;

struct futhark_i32_1d *futhark_new_i32_1d(struct futhark_context *ctx,
int32_t *data,
int dim0);

int futhark_free_i32_1d(struct futhark_context *ctx,
struct futhark_i32_1d *arr);

int futhark_values_i32_1d(struct futhark_context *ctx,
struct futhark_i32_1d *arr,
int32_t *data);

int64_t *futhark_shape_i32_1d(struct futhark_context *ctx,
(continues on next page)

62 Chapter 6. Interoperability

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

struct futhark_i32_1d *arr);

Again we see the use of pointers to opaque structs. We can use futhark_new_i32_1d to construct
a Futhark array from a C array, and we can use futhark_values_i32_1d to read all elements
from a Futhark array. The representation used by the Futhark array is intentionally hidden from us
- we do not even know (or care) whether it is resident in CPU or GPU memory. The code generator
automatically generates a struct and accessor functions for every distinct array type used in the entry
points of the Futhark program.

The single entry point is declared like this:

int futhark_entry_main(struct futhark_context *ctx,
int32_t *out0,
const struct futhark_i32_1d *in0,
const struct futhark_i32_1d *in1);

As the original Futhark program accepted two parameters and returned one value, the corresponding
C function takes one out parameter and two in parameters (as well as a context parameter).

We have now seen enough to write a small C program (with no error handling) that calls our gen-
erated library:

#include <stdio.h>

#include "dotprod.h"

int main() {
int x[] = { 1, 2, 3, 4 };
int y[] = { 2, 3, 4, 1 };

struct futhark_context_config *cfg = futhark_context_config_new();
struct futhark_context *ctx = futhark_context_new(cfg);

struct futhark_i32_1d *x_arr = futhark_new_i32_1d(ctx, x, 4);
struct futhark_i32_1d *y_arr = futhark_new_i32_1d(ctx, y, 4);

int res;
futhark_entry_main(ctx, &res, x_arr, y_arr);
futhark_context_sync(ctx);

printf("Result: %d\n", res);

futhark_free_i32_1d(ctx, x_arr);
futhark_free_i32_1d(ctx, y_arr);

(continues on next page)

6.2. Calling Futhark from C 63

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

futhark_context_free(ctx);
futhark_context_config_free(cfg);

}

We hard-code the input data here, but we could just as well have read it from somewhere. The call to
futhark_context_new() is where the GPU is initialised (is applicable) and OpenCL kernel code
is compiled and uploaded to the device. This call might be relatively slow. However, subsequent
calls to entry point functions (futhark_dotprod()) will be efficient, as they re-use the already
initialised context.

Note the use of futhark_context_sync() after calling the entry point: Futhark does not guar-
antee that the final results have been written until we synchronise explicitly. Note also that we free
the two arrays x_arr and y_arr once we are done with them - memory management is entirely
manual.

If we save this program as luser.c, we can compile and run it like this:

$ gcc luser.c -o luser -lOpenCL -lm -ldotprod
$./luser
Result: 24

You may need to set LD_LIBRARY_PATH=. before the dynamic linker can find libdotprod.so.
Also, this program will only work if the default OpenCL device is usable on your system, since we
did not request any specific device. For testing on a system that does not support OpenCL, simply
use futhark c instead of futhark opencl. The generated API will be the same.

6.3 Handling Awkward Futhark Types

Our dot product function uses only types that map easily to NumPy and C: primitives and arrays
of primitives. But what happens if we have an entry point that involves abstract types with hidden
definitions, or types with no clear analogue in C, such as records or arrays of tuples? In this case,
the generated API defines structs for opaque types that support very few operations.

Consider the following contrived program, pack.fut, which contains two entry points:

entry pack (xs: []i32) (ys: []i32): [](i32,i32) = zip xs ys

entry unpack (zs: [](i32,i32)): ([]i32,[]i32) = unzip zs

The pack function turns two arrays into one array of pairs, and the unpack function reverses the
operation. If compiled to Python, the pack function will return a special “opaque” object whose
contents cannot be inspected. If compiled to C, pack.h contains the following definitions:

64 Chapter 6. Interoperability

Parallel Programming in Futhark, Release 0.80

struct futhark_opaque_z31U814583239044437263 ;

int futhark_free_opaque_z31U814583239044437263(struct futhark_context␣
→˓*ctx,

struct futhark_opaque_
→˓z31U814583239044437263 *obj);

int futhark_pack(struct futhark_context *ctx,
struct futhark_opaque_z31U814583239044437263 **out0,
struct futhark_i32_1d *in0,
struct futhark_i32_1d *in1);

int futhark_unpack(struct futhark_context *ctx,
struct futhark_i32_1d **out0,
struct futhark_i32_1d **out1,
struct futhark_opaque_z31U814583239044437263 *in0);

The unfortunately named struct, futhark_opaque_z31U814583239044437263, represents an ar-
ray of tuples. There is nothing we can do with it except for freeing it, or passing it back to an entry
point. In fact, the name is not even stable - it’s a hash of the internal representation. If you try the
above example, you may see a different name.

Opaque types typically occur when you are writing a Futhark program that keeps some kind of
state that you don’t want the user modifying or reading directly, but you need access to for each call
to an entry point. Since Futhark programs are purely functional (and therefore stateless), having
the user to manually pass back the state returned by the previous call is the only way to accom-
plish this. Fortunately, we can assign these opaque types somewhat more readable names by type
abbreviations:

type~ array_of_pairs = [](i32,i32)

entry pack (xs: []i32) (ys: []i32): array_of_pairs = zip xs ys

entry unpack (zs: array_of_pairs): ([]i32,[]i32) = unzip zs

Now, when compiled to C, we obtain a somewhat more readable name for the opaque type:

struct futhark_opaque_array_of_pairs ;

int futhark_free_opaque_array_of_pairs(struct futhark_context *ctx,
struct futhark_opaque_array_of_

→˓pairs *obj);

int futhark_entry_pack(struct futhark_context *ctx,
(continues on next page)

6.3. Handling Awkward Futhark Types 65

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

struct futhark_opaque_array_of_pairs **out0, const
struct futhark_i32_1d *in0, const
struct futhark_i32_1d *in1);

int futhark_entry_unpack(struct futhark_context *ctx,
struct futhark_i32_1d **out0,
struct futhark_i32_1d **out1, const
struct futhark_opaque_array_of_pairs *in0);

We have to be careful to use the type abbreviation everywhere, as the compiler will generate the
hash-named opaque in any place that we miss.

66 Chapter 6. Interoperability

Chapter 7
A Parallel Cost Model for Futhark Programs

In this chapter we develop a more formal model for Futhark and provide an ideal cost model for
the language in terms of the concepts of work and span. Before we present the cost model for the
language, we present a simple type system for Futhark and an evaluation semantics. In the initial
development, we shall not consider Futhark’s more advanced features such as loops and uniqueness
types, but we shall return to these constructs later in the chapter.

Futhark supports certain kinds of nested parallelism. For instance, Futhark can in many cases map
two nested maps into fully parallel code. Consider the following Futhark function:

def multable (n : i64) : [n][n]i64 =
map (\i ->

map (\j -> i * j) (iota n))
(iota n)

In the case of this program, Futhark will flatten the code to make a single flat kernel. We shall
return to the concept of flattening in a later chapter.

When we shall understand how efficient an algorithm is, we shall build our analysis around the
two concepts of work and span. These concepts are defined inductively over the various Futhark
language constructs and we may therefore argue about work and span in a compositional way. For
instance, if we want to know about the work required to execute the multable function, we need to
know about how to compute the work for a call to the map SOAC, how to compute the work for the
iota operation, how to compute the work for the multiply operation, and, finally, how to combine
the work. The way to determine the work for a map SOAC instance is to multiply the size of the
argument array with the work of the body of the argument function. Thus, we have

𝑊 (map (\j → i * j) (iota 𝑛)) = 𝑛+ 1

Applying a similar argument to the outer map, we get

𝑊 (map (\i → · · ·) (iota 𝑛)) = (𝑛+ 1)2

67

https://en.wikipedia.org/wiki/Analysis_of_parallel_algorithms

Parallel Programming in Futhark, Release 0.80

Most often we are interested in finding the asymptotical complexity of the algorithm we are ana-
lyzing, in which case we will simply write

𝑊 (map (\i → · · ·)(iota 𝑛) = 𝑂(𝑛2)

In a similar way we can derive that the span of a call multable n, written 𝑆(multable n), is
𝑂(1).

7.1 Futhark - the Language

In this section we present a simplified version of the Futhark language in terms of syntax, a type
system for the language, and a strict evaluation semantics.

We assume a countable infinite number of program variables, ranged over by 𝑥 and 𝑓 . Binary infix
scalar operators, first-order built-in operations, and second order array combinators are given as
follows:

binop ::= + | - | * | / | · · ·

op ::= - | abs | copy | concat | empty
| iota | partition | rearrange
| replicate | reshape
| rotate | shape | scatter
| split | transpose | unzip | zip

soac ::= map | reduce
| scan | filter | partition

In the grammar for the Futhark language below, we have eluded both the required explicit type
annotations and the optional explicit type annotations. Also for simplicity, we are considering only

68 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

“unnested” pattern matching and we do not, in this section, consider uniqueness types.

𝑝 ::= 𝑥 | (𝑥1, ..., 𝑥𝑛)

ps ::= 𝑝1 · · · 𝑝𝑛

𝐹 ::= \𝑝𝑠 → 𝑒 | 𝑒 binop | binop 𝑒

𝑃 ::= let 𝑓 ps = 𝑒 | 𝑃1𝑃2 | let 𝑝 = 𝑒

𝑣 ::= true | false | 𝑛 | 𝑟

| [𝑣1, ..., 𝑣𝑛] | (𝑣1, ..., 𝑣𝑛)

𝑒 ::= 𝑥 | 𝑣 | let ps = 𝑒 in 𝑒′

| 𝑒[𝑒′] | 𝑒[𝑒′:𝑒′′]

| [𝑒1, ..., 𝑒𝑛] | (𝑣1, ..., 𝑣𝑛)
| 𝑓𝑒1...𝑒𝑛 | op 𝑒1...𝑒𝑛 | 𝑒1 binop 𝑒2

| loop 𝑝1=𝑒1, · · · , 𝑝𝑛=𝑒𝑛 for 𝑥<𝑒 do 𝑒′

| loop 𝑝1=𝑒1, · · · , 𝑝𝑛=𝑒𝑛 while 𝑒 do 𝑒′

| soac 𝐹 𝑒1 · · · 𝑒𝑛

7.2 Futhark Type System

Without considering Futhark’s uniqueness type system, Futhark’s type system is simple. Types (𝜏)
follow the following grammar-slightly simplified:

𝜏 ::= i32 | f32 | bool | []𝜏
| (𝜏1, · · · , 𝜏𝑛) | 𝜏 → 𝜏 ′ | 𝛼

We shall refer to the types i32, f32, and bool as basic types. Futhark supports more basic types
than those presented here; consult Section 3.1 for a complete list.

In practice, Futhark requires a programmer to provide explicit parameter types and an explicit result
type for top-level function declarations. Similarly, in practice, Futhark requires explicit types for
top-level let bindings. In such explicit types, type variables are not allowed; at present, Futhark
does not allow for a programmer to declare polymorphic functions.

Futhark’s second order array combinators and some of its primitive operations do have polymorphic
types, which we specify by introducing the concept of type schemes, ranged over by 𝜎, which are
basically quantified types with 𝛼 and 𝛽 ranging over ordinary types. When 𝜎 = ∀𝛼⃗.𝜏 is some type
scheme, we say that 𝜏 ′ is an instance of 𝜎, written 𝜎 ≥ 𝜏 ′ if there exists a substitution [𝜏⃗ /𝛼⃗] such

7.2. Futhark Type System 69

Parallel Programming in Futhark, Release 0.80

that 𝜏 [𝜏⃗ /𝛼⃗] = 𝜏 ′. We require all substitutions to be simple in the sense that substitutions do not
allow for function types, product types, or type variables to be substituted. Other restrictions may
apply, which will be specified using a type variable constraint 𝛼◁𝑇 , where 𝑇 is a set of basic types.

The type schemes for Futhark’s second-order array combinators are as follows:

soac : TypeOf(soac)
filter : ∀𝛼.(𝛼 → bool) → []𝛼 → []𝛼

map : ∀𝛼1 · · ·𝛼𝑛𝛽.(𝛼1 → · · · → 𝛼𝑛 → 𝛽)

→ []𝛼1 → · · · → []𝛼𝑛 → []𝛽

reduce : ∀𝛼.(𝛼 → 𝛼 → 𝛼) → 𝛼 → []𝛼 → 𝛼

scan : ∀𝛼.(𝛼 → 𝛼 → 𝛼) → 𝛼 → []𝛼 → []𝛼

The type schemes for Futhark’s built-in first-order operations are as follows:

op : TypeOf(op)
concat : ∀𝛼.[]𝛼 → · · · → []𝛼 → []𝛼

empty : ∀𝛼.[]𝛼
iota : int → []int

replicate : ∀𝛼.int → 𝛼 → []𝛼

rotate : ∀𝛼.int → []𝛼 → []𝛼

transpose : ∀𝛼.[][]𝛼 → [][]𝛼

unzip : ∀𝛼1 · · ·𝛼𝑛.[](𝛼1, · · · , 𝛼𝑛)

→ ([]𝛼1, · · · , []𝛼𝑛)

scatter : ∀𝛼.[]𝛼 → []int → []𝛼 → []𝛼

zip : ∀𝛼1 · · ·𝛼𝑛.[]𝛼1 → · · · → []𝛼𝑛

→ [](𝛼1, · · · , 𝛼𝑛)

The type schemes for Futhark’s built-in infix scalar operations are as follows:

binop : TypeOf(binop)
+, -, *, /, · · · : ∀𝛼 ◁ {i32, f32}.𝛼 → 𝛼 → 𝛼

==, !=, <, <=, >, >= : ∀𝛼 ◁ {i32, f32}.𝛼 → 𝛼 → bool

We use Γ to range over type environments, which are finite maps mapping variables to types. We
use {} to denote the empty type environment and {𝑥 : 𝜏} to denote a singleton type environment.
When Γ is some type environment, we write Γ, 𝑥 : 𝜏 to denote the type environment with domain
Dom(Γ) ∪ {𝑥} and values (Γ, 𝑥 : 𝜏)(𝑦) = 𝜏 if 𝑦 = 𝑥 and Γ(𝑦), otherwise. Moreover, when
Γ and Γ′ are type environments, we write Γ + Γ′ to denote the type environment with domain
Dom(Γ) ∪Dom(Γ′) and values (Γ + Γ′)(𝑥) = Γ′(𝑥) if 𝑥 ∈ Dom(Γ′) and Γ(𝑥), otherwise.

Type judgments for values take the form ⊢ 𝑣 : 𝜏 , which are read “the value 𝑣 has type 𝜏 .” Type
judgments for expressions take the form Γ ⊢ 𝑒 : 𝜏 , which are read “in the type environment Γ, the
expression 𝑒 has type 𝜏 .” Finally, type judgments for programs take the form Γ ⊢ 𝑃 : Γ′, which are
read “in the type environment Γ, the program 𝑃 has type environment Γ′.”

70 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

Values ⊢ 𝑣 : 𝜏

⊢ 𝑟 : f32

⊢ 𝑛 : i32

⊢ true : bool

⊢ false : bool

⊢ 𝑣𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

⊢ (𝑣1, · · · , 𝑣𝑛) : (𝜏1, · · · , 𝜏𝑛)

⊢ 𝑣𝑖 : 𝜏 𝑖 = [1;𝑛]

⊢ [𝑣1, · · · , 𝑣𝑛] : []𝜏

Expressions Γ ⊢ 𝑒 : 𝜏

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏

Γ ⊢ 𝑒 : []𝜏 Γ ⊢ 𝑒𝑖 : int 𝑖 = [1, 2]

Γ ⊢ 𝑒[𝑒1 : 𝑒2] : []𝜏

Γ ⊢ 𝑒 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑒′ : 𝜏 ′

Γ ⊢ let 𝑥 = 𝑒 in 𝑒′ : 𝜏 ′

Γ ⊢ 𝑒 : (𝜏1, · · · , 𝜏𝑛)
Γ, 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒′ : 𝜏

Γ ⊢ let (𝑥1, · · · , 𝑥𝑛) = 𝑒 in 𝑒′ : 𝜏

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

Γ ⊢ (𝑒1, · · · , 𝑒𝑛) : (𝜏1, · · · , 𝜏𝑛)

Γ ⊢ 𝑒𝑖 : 𝜏 𝑖 = [1;𝑛]

Γ ⊢ [𝑒1, · · · , 𝑒𝑛] : []𝜏

⊢ 𝑣 : 𝜏

Γ ⊢ 𝑣 : 𝜏

7.2. Futhark Type System 71

Parallel Programming in Futhark, Release 0.80

Γ(𝑓) = (𝜏1, · · · , 𝜏𝑛) → 𝜏 Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

Γ ⊢ 𝑓 𝑒1 · · · 𝑒𝑛 : 𝜏

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1; 2]
TypeOf(binop) ≥ 𝜏 𝜏 = 𝜏1 → 𝜏2 → 𝜏 ′

Γ ⊢ 𝑒1 binop𝜏 𝑒2 : 𝜏
′

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]
TypeOf(op) ≥ 𝜏

𝜏 = 𝜏1 → · · · → 𝜏𝑛 → 𝜏 ′

Γ ⊢ op𝜏 𝑒1 · · · 𝑒𝑛 : 𝜏 ′

Γ ⊢ 𝑒 : []𝜏 Γ ⊢ 𝑒′ : int

Γ ⊢ 𝑒[𝑒′] : 𝜏

Γ ⊢ 𝐹 : 𝜏f Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]
TypeOf(soac) ≥ 𝜏f → 𝜏1 → · · · → 𝜏𝑛 → 𝜏

Γ ⊢ soac 𝐹 𝑒1 · · · 𝑒𝑛 : 𝜏

Functions Γ ⊢ 𝐹 : 𝜏

Γ, 𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏

Γ ⊢ \𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 → 𝑒 : 𝜏1 → · · · → 𝜏𝑛 → 𝜏

Γ ⊢ 𝑒 : 𝜏1
TypeOf(binop) ≥ 𝜏1 → 𝜏2 → 𝜏

Γ ⊢ 𝑒 binop : 𝜏2 → 𝜏

Γ ⊢ 𝑒 : 𝜏2
TypeOf(binop) ≥ 𝜏1 → 𝜏2 → 𝜏

Γ ⊢ binop 𝑒 : 𝜏1 → 𝜏

Programs Γ ⊢ 𝑃 : Γ′

Γ ⊢ 𝑒 : 𝜏 𝑥 ̸∈ Dom(Γ)

Γ ⊢ let 𝑥 = 𝑒 : {𝑥 : 𝜏}

Γ ⊢ 𝑃1 : Γ1 Γ + Γ1 ⊢ 𝑃2 : Γ2

Γ ⊢ 𝑃1 𝑃2 : Γ1 + Γ2

Γ, 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏 𝑓 ̸∈ Dom(Γ)

Γ ⊢ let 𝑓 (𝑥1, · · · , 𝑥𝑛) = 𝑒 : {𝑓 : (𝜏1, · · · , 𝜏𝑛) → 𝜏}

72 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

For brevity, we have eluded some of the typing rules and we leave it to the reader to create typing
rules for rearrange, shape, reshape, loop-for, loop-while, and array ranging (e[i:j:o]).

7.3 Futhark Evaluation Semantics

In this section we develop a simple evaluation semantics for Futhark programs. The semantics is
presented as a big step evaluation function that takes as parameter an expression and gives as a result
a value. A soundness property states that if a program 𝑃 is well-typed and contains a function main
of type () → 𝜏 , then, if evaluation of the program results in a value 𝑣, the value 𝑣 has type 𝜏 .

To ease the presentation, we treat the evaluation function as being implicitly parameterised by the
program 𝑃 .

The semantics of types yields their natural set interpretations:

[[i32]] = 𝑍

[[f32]] = 𝑅

[[bool]] = {true, false}
[[(𝜏1, · · · , 𝜏𝑛)]] = [[𝜏1]]× · · · × [[𝜏𝑛]]

[[[]𝜏]] = 𝑁 → [[𝜏]]

[[𝜏1 → 𝜏2]] = [[𝜏1]] → [[𝜏2]]

For ease of presentation, we consider a syntactic vector value [𝑣1, · · · , 𝑣𝑛] equal to the projection
function on the vector, returning a default value of the underlying type for indexes greater than 𝑛−1
(zero-based interpretation).

For built-in operators op𝜏 , annotated with their type instance 𝜏 according to the typing rules, we
assume a semantic function [[op𝜏]] : [[𝜏]]. As an examples, we assume [[+i32→i32→i32]] : 𝑍 → 𝑍 →
𝑍.

When 𝑒 is some expression, we write 𝑒[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛] to denote the simultaneous substitution
of 𝑣1, · · · , 𝑣𝑛 for 𝑥1, · · · , 𝑥𝑛 (after appropriate renaming of bound variables) in 𝑒.

Evaluation of an expression 𝑒 is defined by an evaluation function [[·]] : Exp → Val. The function is
defined in a mutually recursive fashion with an auxiliary utility function ⟨𝐹 ⟩ for extracting SOAC

7.3. Futhark Evaluation Semantics 73

Parallel Programming in Futhark, Release 0.80

function parameters. We first give the definition for [[·]]:

[[𝑓 𝑒1 · · · 𝑒𝑛]] = [[𝑒[[[𝑒1]]/𝑥1 · · · [[𝑒𝑛]]/𝑥𝑛]]]

where let 𝑓 𝑥1 · · ·𝑥𝑛 = 𝑒 ∈ 𝑃

[[𝑣]] = 𝑣

[[𝑒[𝑒′]]] = [[𝑒]]([[𝑒′]])

[[let 𝑥 = 𝑒 in 𝑒′]] = [[𝑒′[[[𝑒]]/𝑥]]]

[[let (𝑥1, · · · , 𝑥𝑛) = 𝑒 in 𝑒′]] = [[𝑒′[𝑣1/𝑥1 · · · 𝑣𝑛/𝑥𝑛]]]

where [[𝑒]] = (𝑣1, · · · , 𝑣𝑛)
[[[𝑒1, · · · , 𝑒𝑛]]] = [[[𝑒1]], · · · , [[𝑒𝑛]]]
[[(𝑒1, · · · , 𝑒𝑛)]] = ([[𝑒1]], · · · , [[𝑒𝑛]])
[[𝑒1 binop𝜏 𝑒2]] = [[binop𝜏]] [[𝑒1]] [[𝑒2]]

[[op𝜏 𝑒1 · · · 𝑒𝑛]] = [[op𝜏]] [[𝑒1]] · · · [[𝑒𝑛]]
[[map 𝐹 𝑒1 · · · 𝑒𝑚]] = [[[𝑒′[𝑣11/𝑥1 · · · 𝑣𝑚1 /𝑥𝑚], · · · , 𝑒′[𝑣1𝑛/𝑥𝑛 · · · 𝑣𝑚𝑛 /𝑥𝑚]]]]

where 𝜆𝑥1 · · ·𝑥𝑚.𝑒
′ = ⟨𝐹 ⟩

and [𝑣𝑖1, · · · , 𝑣𝑖𝑛] = [[𝑒𝑖]] 𝑖 = [1..𝑚]

Given a SOAC function parameter 𝐹 , we define the utility extraction function, ⟨𝐹 ⟩, as follows:

⟨ \𝑥1 · · ·𝑥𝑛 → 𝑒 ⟩ = 𝜆𝑥1 · · ·𝑥𝑛.𝑒

⟨ binop 𝑒 ⟩ = 𝜆𝑥.𝑥 binop 𝑣

where 𝑣 = [[𝑒]]

⟨ 𝑒 binop ⟩ = 𝜆𝑥.𝑣 binop 𝑥

where 𝑣 = [[𝑒]]

Type soundness is expressed by the following proposition:

Proposition: Futhark Type Soundness

If ⊢ 𝑃 : Γ and Γ(main) = () → 𝜏 and [[main ()]] = 𝑣 then ⊢ 𝑣 : 𝜏 .

Notice that we have glanced over the concept of bounds checking by assuming that arrays with
elements of type 𝜏 are implemented as total functions from 𝑁 to [[𝜏]].

7.4 Work and Span

In this section we give a cost model for Futhark in terms of functions for determining the total work
done by a program, in terms of operations done by the big-step evaluation semantics, and the span
of the program execution, in terms of the maximum depth of the computation, assuming an infinite
amount of parallelism in the SOAC computations. The functions for work and span, denoted by𝑊 :

74 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

Exp → 𝑁 and 𝑆 : Exp → 𝑁 are given below. The functions are defined independently, although
they make use of the evaluation function [[·]]. We have given the definitions for the essential SOAC
functions, namely map and reduce. The definitions for the remaining SOACs follow the same lines
as the definitions for map and reduce.

Work (𝑊)

𝑊 (𝑣) = 1

𝑊 (let 𝑥 = 𝑒 in 𝑒′) = 𝑊 (𝑒) +𝑊 (𝑒′[[[𝑒]]/𝑥]) + 1

𝑊 (let (𝑥1, ..., 𝑥𝑛) = 𝑒 in 𝑒′) = let [𝑣1, ..., 𝑣𝑛] = [[𝑒]]

in𝑊 (𝑒) +𝑊 (𝑒′[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛]) + 1

𝑊 ([𝑒1, · · · , 𝑒𝑛]) = 𝑊 (𝑒1) + . . .+𝑊 (𝑒𝑛) + 1

𝑊 ((𝑒1, · · · , 𝑒𝑛)) = 𝑊 (𝑒1) + . . .+𝑊 (𝑒𝑛) + 1

𝑊 (𝑓 𝑒1 · · · 𝑒𝑛) = 𝑊 (𝑒1) + . . .+𝑊 (𝑒𝑛) +𝑊 (𝑒[[[𝑒1]]/𝑥1, · · · [[𝑒𝑛]]/𝑥𝑛]) + 1

where(let 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑒) ∈ 𝑃

𝑊 (𝑒1binop𝑒2) = 𝑊 (𝑒1) +𝑊 (𝑒2) + 1

𝑊 (map 𝐹 𝑒) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒]]

𝜆𝑥.𝑒′ = ⟨𝐹 ⟩
in𝑊 (𝑒) +𝑊 (𝑒′[𝑣1/𝑥]) + . . .+𝑊 (𝑒′[𝑣𝑛/𝑥])

𝑊 (reduce 𝐹 𝑒′ 𝑒′′) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒′′]]

𝜆𝑥 𝑥′.𝑒 = ⟨𝐹 ⟩
in𝑊 (𝑒′) +𝑊 (𝑒′′) +𝑊 (𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥

′])× 𝑛+ 1

assuming 𝑊 (𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥
′]) indifferent to 𝑣1 and 𝑣𝑛

𝑊 (iota 𝑒) = 𝑊 (𝑒) + 𝑛 where 𝑛 = [[𝑒]]

7.4. Work and Span 75

Parallel Programming in Futhark, Release 0.80

Span (𝑆)

𝑆(𝑣) = 1

𝑆(let 𝑥 = 𝑒 in 𝑒′) = 𝑆(𝑒) + 𝑆(𝑒′[[[𝑒]]/𝑥]) + 1

𝑆(let (𝑥1, ..., 𝑥𝑛) = 𝑒 in 𝑒′) = let [𝑣1, ..., 𝑣𝑛] = [[𝑒]]

in 𝑆(𝑒) + 𝑆(𝑒′[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛])

𝑆([𝑒1, · · · , 𝑒𝑛]) = 𝑆(𝑒1) + . . .+ 𝑆(𝑒𝑛) + 1

𝑆((𝑒1, · · · , 𝑒𝑛)) = 𝑆(𝑒1) + . . .+ 𝑆(𝑒𝑛) + 1

𝑆(𝑓𝑒1 · · · 𝑒𝑛) = 𝑆(𝑒1) + . . .+ 𝑆(𝑒𝑛) + 𝑆(𝑒[[[𝑒1]]/𝑥1, · · · [[𝑒𝑛]]/𝑥𝑛]) + 1

where (let 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑒) ∈ 𝑃

𝑆(𝑒1 binop 𝑒2) = 𝑆(𝑒1) + 𝑆(𝑒2) + 1

𝑆(map 𝐹 𝑒) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒]]

𝜆𝑥.𝑒′ = ⟨𝐹 ⟩
in 𝑆(𝑒) + max(𝑆(𝑒′[𝑣1/𝑥]), . . . , 𝑆(𝑒′[𝑣𝑛/𝑥])) + 1

𝑆(reduce 𝐹 𝑒′ 𝑒′′) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒′′]]

𝜆𝑥 𝑥′.𝑒 = ⟨𝐹 ⟩
in 𝑆(𝑒′) + 𝑆(𝑒′′) + 𝑆(𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥

′])× ln𝑛+ 1

assuming 𝑆(𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥
′]) indifferent to 𝑣1 and 𝑣𝑛

𝑆(iota 𝑒) = 𝑆(𝑒) + 1

7.5 Reduction by Contraction

In this section, we shall investigate an implementation of reduction using the general concept of
contraction, which is the general algorithmic trick of solving a particular problem by first making
a contraction step, which simplifies the problem size, and then repeating the contraction algorithm
until a final result is reached [Org16].

The reduction algorithm that we shall implement assumes an associative reduction operator ⊕ :
𝐴 → 𝐴 → 𝐴, a neutral element of type 𝐴, and a vector 𝑣 of size 2𝑛, containing elements of type
𝐴. If size(𝑣) = 1, the algorithm returns the single element. Otherwise, the algorithm performs a
contraction by splitting the vector in two and applies the reduction operator elementwise on the two
subvectors, thereby obtaining a contracted vector, which is then used as input to a recursive call to
the algorithm. In Futhark, the function can be implemented as follows:

def red (xs : []i32) : i32 =
let xs = loop xs=padpow2 0 xs while length xs > 1 do
let n = length xs / 2
in map2 (+) (take n xs) (take n (drop n xs))

The function specializes the reduction operator ⊕ to be + and the neutral element to be 0. The

76 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

function first pads the argument vector xs with neutral elements to ensure that its size is a power of
two. It then implements a sequential loop with the contraction step as its loop body, implemented
by a parallel map over an appropriately split input vector.

The auxiliary function for padding the input vector is implemented by the following code:

-- Find the smallest power of two greater than n
def nextpow2 (n:i64) : i64 =
loop a=2 while a < n do 2*a

-- Pad a vector to make its size a power of two
def padpow2 [n] (ne: i32) (v:[n]i32) : []i32 =

concat v (replicate (nextpow2 n - n) ne)

7.5.1 Determining Work and Span

To determine the work and span of the algorithm red, we first determine the work and span for
padpow2, for which we again need to determine the work and span for nextpow2. From simple
inspection we have 𝑊 (nextpow2 n) = 𝑆(nextpow2 n) = 𝑂(log n). Now, from the definition of
𝑊 and 𝑆 and because nextpow2 n ≤ 2 n, we have

𝑊 (padpow2 ne v) = 𝑊 (concat 𝑣 (replicate (nextpow2 n - n) ne)) = 𝑂(n)

and

𝑆(padpow2 ne v) = 𝑂(log n)

where n = size v.

Each loop iteration in has span 𝑂(1). Because the loop is iterated at-most log(2 n) times, we have
(where n = size v)

𝑊 (red v) = 𝑂(n) +𝑂(n/2) +𝑂(n/4) + · · ·+𝑂(1) = 𝑂(n)

𝑆(red v) = 𝑂(log n)

It is an exercise for the reader to compare the performance of the reduction code to the performance
of Futhark’s built-in reduce SOAC (see Section 4.2).

7.6 Radix-Sort by Contraction

Another example of a contraction-based algorithm is radix-sort. Radix-sort is a non-comparison
based sorting routine, which implements sorting by iteratively moving elements with a particular
bit set to the beginning (or end) in the array. It turns out that this move of elements with the same
bit set can be parallelised. Thus, for arrays containing 32-bit unsigned integers, the sorting routine

7.6. Radix-Sort by Contraction 77

Parallel Programming in Futhark, Release 0.80

needs only 32 loop-iterations to sort the array. A central property of each step is that elements with
identical bit values will not shift position. Depending on whether the algorithm consistently moves
elements with the bit set to the end of the array or to the beginning of the array results in the array
being sorted in either ascending or descending order.

7.6.1 Radix-Sort in Futhark

A radix-sort algorithm that sorts the argument vector in ascending order is shown below:

def rsort_step [n] (xs: [n]u32, bitn: i32): [n]u32 =
let bits1 = map (\x -> (i64.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs0 = map2 (*) bits0 (scan (+) 0 bits0)
let idxs1 = scan (+) 0 bits1
let offs = reduce (+) 0 bits0
let idxs1 = map2 (*) bits1 (map (+offs) idxs1)
let idxs = map2 (+) idxs0 idxs1
let idxs = map (\x->x-1) idxs
in scatter (copy xs) idxs xs

-- Radix sort algorithm, ascending
def rsort [n] (xs: [n]u32): [n]u32 =
loop (xs) for i < 32 do rsort_step(xs,i)

The function rsort_step implements the contraction step that takes care of moving all elements
with the bitn set to the end of the array. The main function rsort takes care of iterating the
contraction step until the array is sorted (i.e., when the contraction step has been executed for all
bits.) To appreciate the purpose of each data-parallel operation in the function, the table below
illustrates how rsort_step takes care of moving elements with a particular bit set (bit 1) to the
end of the array. The example assumes the current array (xs) contains the array [2,0,6,4,2,1,
5,9]. Notice that the last three values all have their 0-bit set whereas the first five values have not.
The values of xs marked with † are the ones with bit 1 set.

Variable
xs 2† 0 2† 4 2† 1 5 9
bits1 1 0 1 0 1 0 0 0
bits0 0 1 0 1 0 1 1 1
scan (+) 0 bits0 0 1 1 2 2 3 4 5
idxs0 0 1 0 2 0 3 4 5
idxs1 1 1 2 2 3 3 3 3
idxs1' 6 6 7 7 8 8 8 8
idxs1'' 6 0 7 0 8 0 0 0
idxs 6 1 7 2 8 3 4 5
map (-1) idxs 5 0 6 1 7 2 3 4

78 Chapter 7. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

By a straightforward analysis, we can argue that 𝑊 (rsort v) = 𝑂(n), where 𝑛 = length v; each
of the operations in has work 𝑂(n) and rsort_step is called a constant number of times (i.e.,
32 times). Similarly, we can argue that 𝑆(rsort v) = 𝑂(log n), dominated by the SOAC calls in
rsort_step.

7.7 Counting Primes

A variant of a contraction algorithm is an algorithm that first solves a smaller problem, recursively,
and then uses this result to provide a solution to the larger problem. One such algorithm is a version
of the Sieve of Eratosthenes that, to find the primes smaller than some 𝑛, first calculates the primes
smaller than

√
𝑛. It then uses this intermediate result for sieving away the integers in the range

√
𝑛

up to 𝑛 that are multiples of the primes smaller than
√
𝑛.

Unfortunately, Futhark does not presently support recursion, thus, one needs to use a loop construct
instead to implement the sieve. A Futhark program calculating the number of primes below some
number 𝑛, also denoted in the literature as the 𝜋 function, is shown below:

-- Find the first n primes
def primes (n:i64) : []i64 =
let (acc, _) = loop (acc,c) = ([],2) while c < n+1 do

let c2 = i64.min (c * c) (n+1)
let is = map (+c) (iota (c2-c))
let fs = map (\i ->

let xs = map (\p -> if i%p==0 then 1
else 0) acc

in reduce (+) 0 xs) is
-- apply the sieve
let new = filter (\i -> 0 == fs[i-c]) is
in (concat acc new, c2)

in acc

-- Return the number of primes less than n
def main (n:i64) =

length (primes n)

Notice that the algorithm applies a parallel sieve for each step, using a combination of maps and
reductions. The best known sequential algorithm for finding the number of primes below some
𝑛 takes time 𝑂(𝑛 log log 𝑛). Although the present algorithm is quite efficient in practice, it is not
work effcient, since the work inside the loop is super-linear. The loop itself introduces a span with
a log log 𝑛 factor because the size of the problem is squared at each step, which is identical to
doubling the exponent size at each step (i.e., the sequence 22, 24, 28, 216, . . . , 𝑛, where 𝑛 = 22

𝑚 , for
some positive 𝑚, has 𝑚 = log log 𝑛 elements.)

In Section 11.4 we discuss the possibility of using a flattening approach to implement a work-

7.7. Counting Primes 79

Parallel Programming in Futhark, Release 0.80

efficient parallel Sieve-of-Erastothenes algorithm.

80 Chapter 7. A Parallel Cost Model for Futhark Programs

Chapter 8
Fusion and List Homomorphisms

In this chapter, we outline the general SOAC reasoning principles that lie behind both the philoso-
phy of programming with arrays in Futhark and the techniques used for allowing certain programs
to have efficient parallel implementations. We shall discuss the reasoning principles in terms of
Futhark constructs but introduce a few higher-order concepts that are important for the reasoning.

We first discuss the concept of fusion, which aims at eliminating intermediate arrays while still
allowing the Futhark programmer to express an algorithm using simple SOACs and their associated
reasoning principles.

We then introduce the concept of list homomorphism through a few examples.

8.1 Fusion

Fusion aims at reducing the overhead of unnecessary repeated control-flow or unnecessary tempo-
rary storage. In essence, fusion is defined in terms of a number of fusion rules, which specify how
a Futhark (intermediate) expression can be transformed into a semantically equivalent expression.

The rules make use of the auxiliary higher-order functions for, for instance, function composition,
presented in Section 3.6.

The first fusion rule, 𝐹1, which says that the result of mapping an arbitrary function f over the result
of mapping another arbitrary function g over some array a is identical to mapping the composed
function f <-< g over the array a. The first fusion rule is also called map-map fusion and can
simply be written

map f <-< map g = map (f <-< g)

Given that f and g denote the Futhark functions \x -> e and \y -> e', respectively (possibly
after renaming of bound variables), the function product of f and g, written f <*> g, is defined
as \(x,y) -> (f x, g y).

81

Parallel Programming in Futhark, Release 0.80

Now, given functions f:a->b and g:a->c, the second fusion rule, 𝐹2, which denotes horizontal
fusion, is given by the following equation:

(map f <*> map g) <-< dup = map ((f <*> g) <-< dup)

Here dup is the Futhark function \x -> (x,x).

The fusion rules that we have presented here generalise to functions that take multiple arguments by
applying zipping, unzipping, currying, and uncurrying strategically. Notice that due to Futhark’s
strategy of automatically transforming arrays of tuples into tuples of arrays, the applications of
zipping, unzipping, currying, and uncurrying have no effect at runtime.

Futhark applies a number of other fusion rules, which are based on the fundamental property
that Futhark’s internal representation is based on a number of composed constructs (e.g., named
scanomap and redomap). These constructs turn out to fuse well with map.

8.2 Parallel Utility Functions

For use by other algorithms, a set of utility functions for manipulating and managing arrays is an
important part of the tool box. We present a number of utility functions here, ranging from finding
elements in an array to finding the maximum element and its index in an array.

8.2.1 Finding the Index of an Element in an Array

We device two different functions for finding an index in an array for which the content is identical
to some given value. The first function, find_idx_first, takes a value e and an array xs and
returns the smallest index i into xs for which xs[i] = e:

-- Return the first index i into xs for which xs[i] == e
def find_idx_first [n] (e:i32) (xs:[n]i32) : i64 =
let es = map2 (\x i -> if x==e then i else n) xs (iota n)
let res = i64.minimum es
in if res == n then -1 else res

The second function, find_idx_last, also takes a value and an array but returns the largest index
i into xs for which xs[i] = e:

-- Return the last index i into xs for which xs[i] == e
def find_idx_last [n] (e:i32) (xs:[n]i32) : i64 =
let es = map2 (\x i -> if x==e then i else -1) xs (iota n)
in i64.maximum es

The above two functions make use of the auxiliary functions i32.max and i32.min.

82 Chapter 8. Fusion and List Homomorphisms

Parallel Programming in Futhark, Release 0.80

8.2.2 Finding the Largest Element and its Index in an Array

Futhark allows for reduction operators to take tuples as arguments. This feature is exploited in
the following function, which implements a homomorphism for finding the largest element and its
index in an array:

def mx (m1:i32,i1:i64) (m2:i32,i2:i64) : (i32,i64) =
if m1 > m2 then (m1,i1) else (m2,i2)

def maxidx [n] (xs: [n]i32) : (i32,i64) =
reduce mx (i32.lowest,-1) (zip xs (iota n))

The function is a homomorphism [Bir87]: For any 𝑥 and 𝑦, and with ++ denoting array concate-
nation, there exists an associative operator ⊕ such that

maxidx(𝑥++ 𝑦) = maxidx(𝑥)⊕ maxidx(𝑦)

The operator ⊕ = mx. We will leave it up to the reader to verify that the maxidx function will
operate efficiently on large inputs.

8.3 Radix Sort Revisited

A simple radix sort algorithm was presented already in Section 7.6.1. In this section, we present
two generalized versions of radix sort, one for ascending sorting and one for descending sorting.
As a bonus, the sorting routines return both the sorted array and an index array that can be used
to sort an array with respect to a permutation obtained by sorting another array. The generalised
ascending radix sort is as follows:

-- Store elements for which bitn is not set first
def rs_step_asc [n] ((xs:[n]u32,is:[n]i64),bitn:i32) : ([n]u32,[n]i64) =
let bits1 = map (\x -> (i64.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs0 = map2 (*) bits0 (scan (+) 0 bits0)
let idxs1 = scan (+) 0 bits1
let offs = reduce (+) 0 bits0 -- store idxs1 last
let idxs1 = map2 (*) bits1 (map (+offs) idxs1)
let idxs = map (\x->x-1) (map2 (+) idxs0 idxs1)
in (scatter (copy xs) idxs xs,

scatter (copy is) idxs is)

-- Radix sort - ascending
def rsort_asc [n] (xs: [n]u32) : ([n]u32,[n]i64) =
let is = iota n

(continues on next page)

8.3. Radix Sort Revisited 83

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

in loop (p : ([n]u32,[n]i64)) = (xs,is) for i < 32 do
rs_step_asc(p,i)

And the descending version as follows:

-- Store elements for which bitn is set first
def rs_step_desc [n] ((xs:[n]u32,is:[n]i64),bitn:i32) : ([n]u32,[n]i64) =
let bits1 = map (\x -> (i64.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs1 = map2 (*) bits1 (scan (+) 0 bits1)
let idxs0 = scan (+) 0 bits0
let offs = reduce (+) 0 bits1 -- store idxs0 last
let idxs0 = map2 (*) bits0 (map (+offs) idxs0)
let idxs = map (\x->x-1) (map2 (+) idxs1 idxs0)
in (scatter (copy xs) idxs xs,

scatter (copy is) idxs is)

-- Radix sort - descending
def rsort_desc [n] (xs: [n]u32) : ([n]u32,[n]i64) =
loop (p : ([n]u32,[n]i64)) = (xs,iota n) for i < 32 do
rs_step_desc(p,i)

Notice that in case of identical elements in the source vector, one cannot simply implement the
ascending version by reversing the arrays resulting from calling the descending version.

8.4 Finding the Longest Streak

In this section, we shall demonstrate how to write a function for finding the longest streak of in-
creasing numbers. Here is one possible implementation of the function:

-- Longest streak of increasing numbers
def streak [n] (xs: [n]i32) : i32 =
-- find increments
let ys = rotate 1 xs
let is = (map2 (\x y -> if x < y then 1 else 0) xs ys)[0:n-1]
-- scan increments
let ss = scan (+) 0 is
-- nullify where there is no increment
let ss1 = map2 (\s i -> s*(1-i)) ss is
let ss2 = scan max 0 ss1
-- subtract from increment scan

(continues on next page)

84 Chapter 8. Fusion and List Homomorphisms

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

let ss3 = map2 (-) ss ss2
let res = reduce max 0 ss3
in res

The following derivation shows how the algorithm works for a particular input, namely when
stream is given the argument array [1,5,3,4,2,6,7,8], in which case the algorithm should
return the value 3:

Variable
xs = 1 5 3 4 2 6 7 8
ys = 5 3 4 2 6 7 8 1
is = 1 0 1 0 1 1 1
ss = 1 1 2 2 3 4 5
ss = 0 1 0 2 0 0 0
ss2 = 0 1 1 2 2 2 2
ss3 = 1 0 1 0 1 2 3
res = 3

In Section 9.1.1 we present a simpler algorithm, which builds directly on the concept of a so-called
segmented scan.

8.4. Finding the Longest Streak 85

Parallel Programming in Futhark, Release 0.80

86 Chapter 8. Fusion and List Homomorphisms

Chapter 9
Regular Flattening

In this chapter, we introduce the concept of regular moderate flattening [HSE+17], which is the es-
sential technique used for making regular nested parallel Futhark programs run efficiently in practice
on parallel hardware such as GPUs.

We first introduce a number of parallel segmented operations, which are essential for dealing with
nested parallelism. The segmented operations, it turns out, can be implemented using Futhark’s
standard SOAC parallel array combinators. In particular, it turns out that the scan operator is of
critical importance in that it can be used to develop the notion of a segmented scan operation, an
operation that, in its own right, is essential to many parallel algorithms. Based on the segmented
scan operation and the other Futhark SOAC operations, we present a set of utility functions as well
as their parallel implementations. The functions are used by the moderate flattening transformation
presented in Section 9.6, but are also useful, as we shall see in Section 11, for the programmer to
manage irregular parallelism through flattening transformations, performed manually by the pro-
grammer.

9.1 Segmented Scan

As mentioned, the segmented scan operation is quite essential for Futhark to flatten nested regular
parallelism and for the programmer to flatten irregular nested parallel problems. The operation can
be implemented with a simple scan using an associative function that operates on pairs of values
[Ble90, Sch80]. Here is the definition of the segmented scan operation, hardcoded to work with
addition:

-- Segmented scan with integer addition
def segmented_scan_add [n] (flags:[n]bool) (vals:[n]i32) : [n]i32 =
let pairs = scan (\(v1,f1) (v2,f2) ->

let f = f1 || f2
let v = if f2 then v2 else v1+v2

(continues on next page)

87

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

in (v,f)) (0,false) (zip vals flags)
let (res,_) = unzip pairs
in res

We can make use of Futhark’s support for higher-order functions and polymorphism to define a
generic version of segmented scan that will work for other monoidal structures than addition on
i32 values:

def segmented_scan 't [n] (g:t->t->t) (ne: t) (flags: [n]bool) (vals:␣
→˓[n]t): [n]t =
let pairs = scan (\ (v1,f1) (v2,f2) ->

let f = f1 || f2
let v = if f2 then v2 else g v1 v2
in (v,f)) (ne,false) (zip vals flags)

let (res,_) = unzip pairs
in res

We leave it up to the reader to prove that, given an associative function g, (1) the operator passed
to scan is associative and (2) (ne, false) is a neutral element for the operator.

9.1.1 Finding the Longest Streak Using Segmented Scan

In this section we revisit the problem of Section 8.4 for finding the longest streak of increasing
numbers. We show how we can make direct use of a segmented scan operation for solving the
problem:

-- Longest streak of increasing numbers
def segmented_streak [n] (xs: [n]i32) : i32 =
let ys = rotate 1 xs
let is = (map2 (\x y -> if x < y then 1 else 0) xs ys)[0:n-1]
let fs = map (==0) is
let ss = segmented_scan_add fs is
let res = reduce max 0 ss
in res

The algorithm first constructs the is array, as in the previous algorithm, and then uses a segmented
scan over a negation of this array over the unit-array to create the ss3 vector directly. Here is a
derivation of how the segmented-scan based algorithm works:

88 Chapter 9. Regular Flattening

Parallel Programming in Futhark, Release 0.80

Variable
xs = 1 5 3 4 2 6 7 8
ys = 5 3 4 2 6 7 8 1
is = 1 0 1 0 1 1 1
fs = 0 1 0 1 0 0 0
ss = 1 0 1 0 1 2 3
res = 3

The morale here is that the segmented scan operation provides us with a great abstraction.

9.2 Replicated Iota

The first utility function that we will present is called replicated_iota. Given an array of nat-
ural numbers specifying repetitions, the function returns an array of weakly increasing indices
(starting from 0) and with each index repeated according to the repetition array. As an example,
replicated_iota [2,3,1,1] returns the array [0,0,1,1,1,2,3]. The function is defined in
terms of other parallel operations, including scan, map, scatter, and segmented_scan:

def replicated_iota [n] (reps:[n]i64) : []i64 =
let s1 = scan (+) 0 reps
let s2 = map (\i -> if i==0 then 0 else s1[i-1]) (iota n)
let tmp = scatter (replicate (reduce (+) 0 reps) 0) s2 (iota n)
let flags = map (>0) tmp
in segmented_scan (+) 0 flags tmp

An example evaluation of a call to the function replicated_iota is provided below.

Args/Result
reps = 2 3 1 1
s1 = 2 5 6 7
s2 = 0 2 5 6
replicate = 0 0 0 0 0 0 0
tmp = 0 0 1 0 0 2 3
flags = 0 0 1 0 0 1 1
segmented_scan = 0 0 1 1 1 2 3

9.2. Replicated Iota 89

Parallel Programming in Futhark, Release 0.80

9.3 Segmented Replicate

Another useful utility function is called segmented_replicate. Given a one-dimensional replica-
tion array containing natural numbers and a data array of the same shape, segmented_replicate
returns an array of size equal to the sum of the values in the replication array with values from
the data array replicated according to the corresponding replication values. As an example, a call
segmented_replicate [2,1,0,3,0] [5,6,9,8,4] result in the array [5,5,6,8,8,8]. Here
is the code that implements the function segmented_replicate:

def segmented_replicate [n] (reps:[n]i64) (vs:[n]i64) : []i64 =
let idxs = replicated_iota reps
in map (\i -> vs[i]) idxs

The segmented_replicate function makes use of the previously defined function
replicated_iota.

9.4 Segmented Iota

Another useful utility function is the function segmented_iota that, given a array of flags (i.e.,
booleans), returns an array of index sequences, each of which is reset according to the booleans in
the array of flags. As an example, the expression:

segmented_iota [false,false,false,true,false,false,false]

returns the array [0,1,2,0,1,2,3]. The segmented_iota function can be implemented with
the use of a simple call to segmented_scan followed by a call to map:

def segmented_iota [n] (flags:[n]bool) : [n]i64 =
let iotas = segmented_scan (+) 0 flags (replicate n 1)
in map (\x -> x-1) iotas

9.5 Indexes to Flags

Many segmented operations, such as segmented_scan takes as argument an array of boolean flags
for specifying when new segments start. Often, only the sizes of segments are known, which means
that it may come in useful to be able to transform an array of segment sizes to a corresponding array
of boolean flags. Here is one possible parallel implementation of such an idxs_to_flags function:

def idxs_to_flags [n] (is : [n]i64) : []bool =
let vs = segmented_replicate is (iota n)

(continues on next page)

90 Chapter 9. Regular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

let m = length vs
in map2 (!=) (vs :> [m]i64) ([0] ++ vs[:m-1] :> [m]i64)

As an example use of the function, the expression idxs_to_flags [2,1,3] evaluates to the flag
array [false,false,true,true,false,false]. Notice that the implementation also works in
case some segments are of size zero.

9.6 Moderate Flattening

The flattening rules that we shall introduce here allow the Futhark compiler to generate parallel
kernels for various code block patterns. In contrast to the general concept of flattening as intro-
duced by Blelloch [BHS+94], Futhark applies a technique called moderate flattening [HSE+17],
which does not cover arbitrary nested parallelism, but does cover well many regular nested parallel
patterns. We shall come back to the issue of flattening irregular nested parallelism in Section 11.

In essence, moderate flattening works by matching compositions of fused constructs against a num-
ber of flattening rules. The aim is to merge (i.e., flatten) nested parallel operations into sequences
of parallel operations. Although, such flattening is often possible, in particular due to an integrated
transformation called vectorisation, there are situations where choices needs to be made. In par-
ticular, when a map is nested on top of a loop, we may choose to parallelise the outer map and
sequentialise the inner loop, which on the GPU will amount to all threads running sequential loops
in parallel. An alternative, when possible, will be to interchange the outer map and the loop and then
sequentialise the outer loop (on the host) and parallelise the inner map, which will then be executed
multiple times. It turns out that Futhark can make some guesses about which strategy to pursue
based on possible information about the sizes of the arrays. An extension to the static concept
moderate flattening, Futhark also supports a notion of flattening that generates multiple versions
of flattened code, guarded by parameters that may be autotuned to achieve good performance for a
range of different data sets [HTEO19].

In the following we shall focus on the transformations performed by moderate flattening.

9.6.1 Vectorisation

Assuming e' contains SOACs, transform the expression

map (\x -> let y = e in e') xs

into the expression

let ys = map (\x -> e) xs
in map (\(x,y) -> e') (zip xs ys)

9.6. Moderate Flattening 91

Parallel Programming in Futhark, Release 0.80

This transformation does not itself capture any nested parallelism but may enable other transforma-
tions by eliminating the inner let-expression.

9.6.2 Map-Map Nesting

Nested applications of map constructs are in essence transformed into a single map construct by (1)
flattening the argument array, (2) applying the inner function on the flattened array, and (3) unflat-
tening the concatenated results. This process can be repeated for multiple nested map constructs. It
turns out that the administrative operations can be implemented with zero overhead.

9.6.3 Map-Scan Nesting

In case of an expression made up from a map construct appearing on top of a scan operation, the
expression is transformed into a regular segmented scan operation. That is, the expression:

map (\xs -> scan f ne xs) xss

is transformed into the expression:

regular_segmented_scan f ne xss

Notice here that we assume the availability of a regular segmented scan operation of type:

val regular_segmented_scan 't [n] [m]: (t->t->t) -> t -> [n][m]t ->␣
→˓[n][m]t

Internally, this function will use the inner size of the multi-dimensional argument array (i.e., m)
to construct an appropriate flag vector suitable for the segmented scan. Again, for an in-depth
discussion of how to implement a segmented scan operation on top of an ordinary scan operation,
please consult Section 9.1.

9.6.4 Map-Reduce Nesting

In case of a map construct appearing on top of a reduce operation, this expression is transformed
into a regular segmented reduction [LH17]. That is, the expression:

map (\xs -> reduce f ne xs) xss

is transformed into the expression:

regular_segmented_reduce f ne xss

Notice here that we assume the availability of a regular segmented reduction operation of type:

92 Chapter 9. Regular Flattening

Parallel Programming in Futhark, Release 0.80

val regular_segmented_reduce 't [n] : (t->t->t) -> t -> [n][]t -> [n]t

Internally, this function can be implemented based on the function regular_segmented_scan
discussed above. Here is a simple definition::

def regular_segmented_reduce = map last <-< regular_segmented_scan

9.6.5 Map-Iota Nesting

A map over an iota expression can be transformed to the composition of the segmented_iota
function defined in Section 9.4 and a function ìdxs_to_flags, which converts an array of indices
to an array fs of boolean flags of size equal to the sum of the values in xs and with true-values in
indexes specified by the prefix sums of the index values.

As an example, the expression idxs_to_flags [2,1,3] evaluates to the flag array [false,
false,true,true,false,false]. Notice that the expression idxs_to_flags [2,0,4] eval-
uates to the same boolean vector as idxs_to_flags [2,4]. We shall not here give a definition
of the idxs_to_flags function, but refer the reader to Section 9.5.

All in all, an expression of the form:

map iota xs

is transformed into:

(segmented_iota <-< idxs_to_flags) xs

9.6.6 Map-Replicate Nesting

Recall that replicate has the type:

val replicate 't : (n:i32) -> t -> [n]t

A map over a replicate expression takes the form:

map (\x -> replicate n x) xs

where n is invariant to x. Such an expression can be transformed into the expression:

segmented_replicate (replicate (length xs) n) xs

As an example, consider the expression map (replicate 2) [8,5,1]. This expression is trans-
formed into the expression:

9.6. Moderate Flattening 93

Parallel Programming in Futhark, Release 0.80

segmented_replicate (replicate 3 2) [8,5,1]

which evaluates to [8,8,5,5,1,1]. Notice that the subexpression replicate 3 2 evaluates to
[2,2,2].

94 Chapter 9. Regular Flattening

Chapter 10
Pseudo-Random Numbers and Monte Carlo
Sampling Methods

Pseudo-random number generation and Monte Carlo sampling are concepts that apply to a large
number of application areas. In a data-parallel setting, these concepts require special treatment
beyond the usual sequential methods. In this chapter, we first present a Futhark package, called
cpprandom for generating pseudo-random numbers in parallel. We then present a Futhark package,
called sobol, for generating Sobol sequences, which are examples of so-called low-discrepancy
sequences, sequences that make numerical multi-dimensional integration converge faster than if
pseudo-random numbers were used.

10.1 Generating Pseudo-Random Numbers

The cpprandom package is inspired by the C++ library <random>, which is very elaborate, but also
very flexible. Due to Futhark’s purity, it is up to the programmer to explicitly manage the state of the
pseudo-random number engine (the RNG state). In particular, it is the programmer’s responsibility
to ensure that the same state is not used more than once (unless that is what is desired).

The following program constructs a uniform distribution of single precision floats using
minstd_rand as the underlying RNG engine.

module dist = uniform_real_distribution f32 minstd_rand

let rng = minstd_rand.rng_from_seed [123]
let (rng, x) = dist.rand (1,6) rng

The distmodule is constructed at the program top level, while we use it at the expression level. We
use the minstd_rand module for initialising the random number state using a seed, and then we
pass that state to the rand function in the generated distribution module, along with a description

95

Parallel Programming in Futhark, Release 0.80

of the distribution we desire. We get back not just the random number, but also the new state of the
engine.

The dist.rand function, coming from uniform_real_distribution, simply takes a pair of
numbers describing the range. Consider instead the following code:

module norm_dist = normal_distribution f32 minstd_rand

let (rng, y) = norm_dist.rand {mean=50, stddev=25} rng

In contrast to dist.rand, the norm_dist.rand function, coming from normal_distribution
takes a record specifying the mean and the standard deviation. Since both dist and norm_dist
have been initialised with the same underlying rng_engine, we can reuse the same RNG state.
Such reuse is often convenient when a program needs to generate random numbers from several
different distributions, as we still only have to manage a single RNG state.

10.1.1 Parallel random numbers

Random number generation is inherently sequential. The rand functions take an RNG state as
input and produce a new RNG state. This dependence creates challenges when we wish to map a
function f across some array xs, and each application of the function must produce some random
numbers. We generally don’t want to pass the exact same state to every application, as that means
each element will see the exact same stream of random numbers. The common procedure is to
use split_rng, which creates any number of RNG states from one, and then pass one to each
application of f:

let rngs = minstd_rand.split_rng n rng
let (rngs, ys) = unzip (map2 f rngs xs)
let rng = minstd_rand.join_rng rngs

We assume here that the function f returns not just the result, but also the new RNG state. Gener-
ally, all functions that accept random number states should behave like this. We subsequently use
join_rng to combine all resulting states back into a single state. Thus, parallel programming with
random numbers involves frequently splitting and rejoining RNG states. For most RNG engines,
these operations are generally very cheap.

96 Chapter 10. Pseudo-Random Numbers and Monte Carlo Sampling Methods

Parallel Programming in Futhark, Release 0.80

10.2 Low-Discrepancy Sequences

The Futhark package sobol is a package for generating Sobol sequences, which are examples of
so-called low-discrepancy sequences, sequences that, when combined with Monte-Carlo methods,
make numeric integration converge faster than if ordinary pseudo-random numbers are used and
are more flexible than if uniform sampling techniques are used. Sobol sequences may be multi-
dimensional and a key property of using Sobol sequences is that we can freely choose the number
of points that should span the multi-dimensional space. In contrast, if we set out to use a simpler
uniform sampling technique for spanning two dimensions, we can only span the space properly if
we choose the number of points to be on the form 𝑥2, for some natural number 𝑥. This spanning
problem becomes worse for higher dimensions.

As an example, we shall see how we can use Sobol sequences together with Monte-Carlo simulation
to compute the value of 𝜋. We shall also see that doing so will result in faster convergence towards
the true value of 𝜋 compared to if pseudo-random numbers are used.

To calculate an approximation to the value of 𝜋, we will use a simple dart-throwing approach.
We will throw darts at a 2 by 2 square, centered around the origin, and then establish the ratio
between the number of darts hitting within the unit circle with the number of darts hitting the
square. This ratio multiplied with 4 will be our approximation of 𝜋. The more darts we throw,
the better our approximation, assuming that the darts we throw hit the board somewhat evenly. To
calculate whether a particular dart, thrown at the point (𝑥, 𝑦), is within the unit circle, we can apply
the standard Pythagoras formula:

𝜋 ≈ 4

𝑁

𝑁∑︁
𝑖=1

{︂
1 if 𝑥2

𝑖 + 𝑦2𝑖 < 1
0 otherwise

For the actual throwing of darts, we need to establish 𝑁 pairs of numbers, each in the interval [-
1;1]. Now, it turns out that it matters significantly how we choose to throw the darts. Some obvious
choices would be to throw the darts in a regular grid (i.e., uniform sampling), or to choose points
using a pseudo-random number generator.

The Futhark package makes essential use of an independent formula for calculating, independently,
the 𝑛’th Sobol number. However, even though such a formula is essential for achieving parallelism,
it performs poorly compared to the more efficient recurrent formula, which makes it possible to
calculate the 𝑛’th Sobol number if we know the previous Sobol number. The Futhark package
makes essential use of both formulas. The calculation of a sequence of Sobol numbers depends on
a set of direction vectors, which are also provided by the package.

The key functionality of the package comes in the form of a higher-order module Sobol, which
takes as arguments a direction vector module and a module specifying the dimensionality of the
generated Sobol numbers:

module type sobol_dir = { ... }
module sobol_dir : sobol_dir -- file sobol-dir-50, e.g.

(continues on next page)

10.2. Low-Discrepancy Sequences 97

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

module type sobol = {
val D : i64
val norm : f64
val independent : i32 -> [D]u32
val recurrent : i32 -> [D]u32 -> [D]u32
val sobol : (n: i64) -> [n][D]f64

}
module Sobol : (DM : sobol_dir) -> (X : { val D : i64 }) -> sobol

For estimating the value of 𝜋, we will need a two-dimensional Sobol sequence, thus we apply the
Sobol higher-order module to the direction vector module that works for up-to 50 dimensions and
a module specifying a dimensionality of two:

import "lib/github.com/diku-dk/sobol/sobol-dir-50"
import "lib/github.com/diku-dk/sobol/sobol"

module sobol = Sobol sobol_dir { def D: i64 = 2 }

We can now complete the program by writing a main function that computes an array of Sobol
numbers of a size given by the parameter given to main and feed this array into a function that will
compute the estimation of 𝜋 using the function shown above:

def sqr (x:f64) = x * x

def in_circle (p:[sobol.D]f64) : bool =
sqr p[0] + sqr p[1] < 1.0f64

def pi_arr [n] (arr: [n][sobol.D]f64) : f64 =
let bs = map (i32.bool <-< in_circle) arr
let sum = reduce (+) 0 bs
in 4f64 * r64 sum / f64.i64 n

def main (n:i64) : f64 =
sobol.sobol n |> pi_arr

The use of Sobol numbers for estimating 𝜋 turns out to be about three times slower than using a
uniform grid on a standard GPU. However, it converges towards 𝜋 equally well (with increasing 𝑁)
and is superior for larger dimensions [HEO18]. In general, there are other good reasons to avoid
uniform sampling in relation to Monte-Carlo methods.

98 Chapter 10. Pseudo-Random Numbers and Monte Carlo Sampling Methods

Chapter 11
Irregular Flattening

In this chapter, we investigate a number of challenging irregular algorithms, which cannot be dealt
with directly using Futhark’s moderate flattening technique discussed in Section 9.6.

11.1 Flattening by Expansion

For dealing with large non-regular problems, we need ways to regularise the problems so that they
become tractable with the regular parallel techniques that we have seen demonstrated previously.
One way to regularise a problem is by padding data such that the data fits a regular parallel schema.
However, by doing so, we run the risk that the program will use too many parallel resources for
computations on the padding data. This problem will arise, in particular, if the data is very irreg-
ular. As a simple, and also visualisable, example, consider the task of determining the points that
make up a number of line segments given by sets of two points in a 2D grid. Whereas we may
easily devise an algorithm for determining the grid points that make up a single line segment, it
is not immediately obvious how we can efficiently regularise the problem of drawing multiple line
segments, as each line segment will end up being represented by a different number of points. If
we choose to implement a padding regularisation scheme by introducing a notion of ‘’an empty
point”, each line can be represented as the same number of points, which will allow us to map over
an array of such line points for processing the lines using regular parallelism. However, the cost we
pay is that even the smallest line will be represented as the same number of points as the longest
line.

Another strategy for regularisation is to flatten the irregular parallelism into regular parallelism
and use segmented operations to process each particular object. It turns out that there, in many
cases, is a simple approach to implement such flattening, using, as we shall see, a technique called
expansion, which will take care of all the knitty gritty details of the flattening. The expansion
approach is centered around a function that we shall call expand, which, as the name suggests,
expands a source array into a longer target array, by expanding each individual source element into
multiple target elements, which can then be processed in parallel.

99

Parallel Programming in Futhark, Release 0.80

For implementing the expand function using only parallel operations, we shall make use of the
segmented helper functions defined in Section 9. In particular, we shall make use of the functions
replicated_iota, segmented_replicate, and segmented_iota.

Here is the generic type of the expand function:

val expand 'a 'b : (sz: a -> i32) -> (get: a -> i32 -> b) -> []a -> []b

The function expands a source array into a target array given (1) a function that determines, for
each source element, how many target elements it expands to and (2) a function that computes
a particular target element based on a source element and the target element number associated
with the source. As an example, the expression expand (\x->x) (*) [2,3,1] returns the array
[0,2,0,3,6,0]. The function is defined as follows:

def expand 'a 'b (sz: a -> i64) (get: a -> i64 -> b) (arr:[]a) : []b =
let szs = map sz arr
let idxs = replicated_iota szs
let iotas = segmented_iota (map2 (!=) idxs (rotate (i64.neg 1) idxs))
in map2 (\i j -> get arr[i] j) idxs iotas

11.2 Drawing Lines

In this section we demonstrate how to apply the flattening-by-expansion technique for obtaining
a work efficient line drawing routine that draws lines fully in parallel. The technique resembles
the development by Blelloch [Ble90] with the difference that it makes use of the expand function
defined in the previous section. Given a number of line segments, each defined by its end points
(𝑥1, 𝑦1) and (𝑥2, 𝑦2), the algorithm will find the set of all points constituting all the line segments.

We first present an algorithm that will find all points that constitutes a single line segment. For com-
puting this set, observe that the number of points that make up the constituting set is the maximum
of |𝑥2 − 𝑥1| and |𝑦2 − 𝑦1|, the absolute values of the difference in 𝑥-coordinates and 𝑦-coordinates,
respectively. Using this observation, the algorithm can independently compute the constituting set
by first calculating the proper direction and slope of a line, relative to a particular starting point.

The simple line drawing routine is given as follows:

-- Finding points on a line
type point = (i64,i64)
type line = (point,point)
type points [n] = [n]point

def compare (v1:i64) (v2:i64) : i64 =
if v2 > v1 then 1 else if v1 > v2 then -1 else 0

(continues on next page)

100 Chapter 11. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

def slope ((x1,y1):point) ((x2,y2):point) : f32 =
if x2==x1 then if y2>y1 then 1f32 else -1f32

else f32.i64(y2-y1) / f32.abs(f32.i64(x2-x1))

def linepoints ((x1,y1):point, (x2,y2):point) : points [] =
let len = 1 + i64.max (i64.abs(x2-x1)) (i64.abs(y2-y1))
let xmax = i64.abs(x2-x1) > i64.abs(y2-y1)
let (dir,sl) =
if xmax then (compare x1 x2, slope (x1,y1) (x2,y2))
else (compare y1 y2, slope (y1,x1) (y2,x2))

in map (\i -> if xmax
then (x1+i*dir,

y1+i64.f32(f32.round(sl*f32.i64(i))))
else (x1+i64.f32(f32.round(sl*f32.i64(i))),

y1+i*dir)) (iota len)

Futhark code that uses the linepoints function for drawing concrete lines is shown below:

-- Write to grid
def update [h] [w] [n] (grid: [h][w]i64)(xs:[n]i64)(ys:[n]i64): [h][w]i64␣
→˓=
let is = map2 (\x y -> w*y+x) xs ys
let flatgrid = flatten grid
let ones = map (\ _ -> 1) is
in unflatten (scatter (copy flatgrid) is ones)

-- Sequential algorithm for drawing multiple lines
def drawlines [h] [w] [n] (grid: *[h][w]i64) (lines:[n]line) : [h][w]i64 =
loop (grid) for i < n do -- find points for line i
let (xs,ys) = unzip (linepoints (lines[i]))
in update grid xs ys

-- Draw lines on a 70 by 30 grid
def main : [][]i64 =
let height:i64 = 30
let width:i64 = 70
let grid : *[][]i64 = replicate height (replicate width 0)
let lines = [((58,20),(2,3)),((27,3),(2,28)),((5,20),(20,20)),

((4,10),(6,25)),((26,25),(26,2)),((58,20),(52,3))]
in drawlines grid lines

The function main sets up a grid and calls the function drawlines, which takes care of sequentially
updating the grid with constituting points for each line, computed using the linepoints function.
The resulting points look like this:

11.2. Drawing Lines 101

Parallel Programming in Futhark, Release 0.80

An unfortunate problem with the line drawing routine shown above is that it draws the lines sequen-
tially, one by one, and therefore makes only very limited use of a GPU’s parallel cores. There are
various ways one may mitigate this problem. One way could be to use map to draw lines in parallel.
However, such an approach will require some kind of padding to ensure that the map function will
compute data of the same length, no matter the length of the line. A more resource aware approach
will apply a flattening technique for computing all points defined by all lines simultaneously. Using
the expand function defined in the previous section, all we need to do to implement this approach
is to provide (1) a function that determines for a given line, the number of points that make up the
line and (2) a function that determines the n’th point of a particular line, given the index n. The
code for such an approach looks as follows:

-- Parallel flattened algorithm for turning lines into
-- points, using expansion.

def points_in_line ((x1,y1),(x2,y2)) =
i64.(1 + max (abs(x2-x1)) (abs(y2-y1)))

def get_point_in_line ((p1,p2):line) (i:i64) =
if i64.abs(p1.0-p2.0) > i64.abs(p1.1-p2.1)
then let dir = compare (p1.0) (p2.0)

let sl = slope p1 p2
in (p1.0+dir*i,

p1.1+i64.f32(f32.round(sl*f32.i64 i)))
else let dir = compare (p1.1) (p2.1)

let sl = slope (p1.1,p1.0) (p2.1,p2.0)
in (p1.0+i64.f32(f32.round(sl*f32.i64 i)),

p1.1+i*dir)

(continues on next page)

102 Chapter 11. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

def drawlines [h][w][n] (grid:*[h][w]i64)
(lines:[n]line) :[h][w]i64 =

let (xs,ys) = expand points_in_line get_point_in_line lines
|> unzip

in update grid xs ys

Notice that the function get_point_in_line distinguishes between whether the number of points
in the line is counted by the x-axis or the y-axis. Notice also that the flattening technique can be
applied only because all lines have the same color. Otherwise, when two lines intersect, the result
would be undefined, due to the fact that scatter results in undefined behaviour when multiple
values are written into the same location of an array.

11.3 Drawing Triangles

Another example of an algorithm worthy of flattening is an algorithm for drawing triangles. The
algorithm that we present here is based on the assumption that we already have a function for
drawing multiple horizontal lines in parallel. Luckily, we have such a function! The algorithm is
based on the property that any triangle can be split into an upper triangle with a horizontal baseline
and a lower triangle with a horizontal ceiling. Just as the algorithm for drawing lines makes use of
the expand function defined earlier, so will the flattened algorithm for drawing triangles. A triangle
is defined by the three points representing the corners of the triangle:

type triangle = (point, point, point)

We shall make the assumption that the three points that define the triangle have already been sorted
according to the y-axis. Thus, we can assume that the first point is the top point, the third point is
the lowest point, and the second point is the middle point (according to the y-axis).

The first function we need to pass to the expand function is a function that determines the number
of horizontal lines in the triangle:

def lines_in_triangle ((p,_,r):triangle) : i64 =
i64.i32 (r.1 - p.1 + 1)

The second function we need to pass to the expand function is somewhat more involved. We first
define a function dxdy, which computes the inverse slope of a line between two points:

def dxdy (a:point) (b:point) : f32 =
let dx = b.0 - a.0
let dy = b.1 - a.1
in if dy == 0 then f32.i32 0
else f32.i32 dx f32./ f32.i32 dy

11.3. Drawing Triangles 103

Parallel Programming in Futhark, Release 0.80

We can now define the function that, given a triangle and the horizontal line number in the triangle
(counted from the top), returns the corresponding line:

def get_line_in_triangle ((p,q,r):triangle) (i:i64) =
let y = p.1 + i32.i64 i
in if i32.i64 i <= q.1 - p.1 then -- upper half

let sl1 = dxdy p q
let sl2 = dxdy p r
let x1 = p.0 + i32.f32(f32.round(sl1 * f32.i64 i))
let x2 = p.0 + i32.f32(f32.round(sl2 * f32.i64 i))
in ((x1,y),(x2,y))

else -- lower half
let sl1 = dxdy r p
let sl2 = dxdy r q
let dy = (r.1 - p.1) - i32.i64 i
let x1 = r.0 - i32.f32(f32.round(sl1 * f32.i32 dy))
let x2 = r.0 - i32.f32(f32.round(sl2 * f32.i32 dy))
in ((x1,y),(x2,y))

The function distinguishes between whether the line to compute resides in the upper or the lower
subtriangle. Finally, we can define a parallel, work-efficient function that converts a number of
triangles into lines:

def lines_of_triangles (xs:[]triangle) : []line =
expand lines_in_triangle get_line_in_triangle

(map normalize xs)

def draw (height:i64) (width:i64) : [][]i32 =

To see the code in action, here is a function that draws three triangles on a grid of height 30 and
width 62:

def draw (height:i64) (width:i64) : [][]i32 =
let grid : *[][]i32 = replicate height (replicate width 0)
let triangles = [((5,10),(2,28),(18,20)),

((42,6),(58,10),(25,22)),
((8,3),(15,15),(35,7))]

let lines = lines_of_triangles triangles
in drawlines grid lines

The function makes use of both the lines_of_triangles function that we have defined here and
the work efficient drawlines function defined previously. Here is a plot of the result:

104 Chapter 11. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

11.4 Primes by Expansion

We saw earlier in Section 7.7 how we could implement a parallel algorithm for finding the number
of primes below a given number. We also found, however, that the algorithm presented was not
work-efficient. It is possible to implement a work-efficient algorithm using the expand function.
We will leave the task as an exercise for the reader.

11.5 Complex Flattening

Unfortunately, the flattening-by-expansion technique does not suit all irregular problems. We shall
now investigate how we can flatten a highly irregular algorithm such as quick-sort. The Quick-sort
algorithm can be presented very elegantly in a functional language. The function qsort that we
will define has the following type:

val qsort 't [n] : (t -> t -> bool) -> [n]t -> [n]t

Given a comparison function (<=) and an array of elements xs, qsort (<=) xs returns an ar-
ray with the elements in xs sorted according to <=. Consider the following pseudo-code, which,
unfortunately, is not immediately Futhark code:

def qsort (<=) xs =
if length xs < 2 then xs
else let (left,middle,right) = partition (<=) xs[length xs / 2] xs

in qsort (<=) left ++ middle ++ qsort (<=) right

11.4. Primes by Expansion 105

Parallel Programming in Futhark, Release 0.80

Here the function partition returns three arrays with the first array containing elements smaller
than the pivot element xs[length xs / 2], the second array containing elements equal to the
pivot element, and the third array containing elements that are greater than the pivot element. There
are multiple problems with this code. First, the code makes use of recursion, which is not supported
by Futhark. Second, the kind of recursion used is not tail-recursion, which means that it is not
directly obvious how to eliminate the recursion. Third, it is not clear how the code can avoid using
an excessive amount of memory instead of making use of inplace-updates for the sorting. Finally,
it seems that the code is inherently task-parallel in nature and not particularly data-parallel.

The solution is to solve a slightly more general problem. More precisely, we shall set out to sort a
number of segments, simultaneously, where each segment comprises a part of the array. Notice that
we are interested in supporting a notion of partial segmentation, for which the segments of interest
are disjoint but do not necessarily together span the entire array. In particular, the algorithm does
not need to sort segments containing previously chosen pivot values. Such segments are already
located in the correct positions, which means that they need not be moved around by the segmented
quick sort implementation.

We first define a type sgm that specifies a segment of an underlying one-dimensional array of values:

At top-level, the function qsort is defined as follows, assuming a function step of type (t -> t
-> bool) -> *[n]t -> []sgm -> (*[n]t,[]sgm):

def qsort [n] 't ((<=): t -> t -> bool) (xs:[n]t) : [n]t =
if n < 2 then xs
else (loop (xs,mms) = (copy xs,[{start=0,sz=n}])

while length mms > 0 do

The step function is called initially with the array to be sorted as argument together with a singleton
array containing a segment denoting the entire array to be sorted. The step function is called
iteratively until the returned array of segments is empty. The job of the step function is to divide
each segment into three new segments based on pivot values found for each segment. After the step
function has reordered the values in the segments, the middle segment (containing values equal to
a pivot) need not be dealt with again in the further process. A new array of segment descriptors
is then defined and after removing empty segment descriptors, the resulting array of non-empty
segment descriptors is returned by the step function together with the reordered value array.

Before we can define the step function, we first define a few helper functions. Using the func-
tions segmented_iota and segmented_replicate, defined earlier, we can define a function for
finding all the indexes represented by an array of segments:

-- find the indexes into values in segments
def idxs_values (sgms:[]sgm) : []i64 =
let sgms_szs : []i64 = map (\sgm -> sgm.sz) sgms
let is1 = segmented_replicate sgms_szs (map (\x -> x.start) sgms)

(continues on next page)

106 Chapter 11. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

let fs = map2 (!=) is1 (rotate (-1) is1)
let is2 = segmented_iota fs

We also define a function info that, given an ordering function and two elements, returns -1 if
the first element is less than the second element, 0 if the elements are identical, and 1 if the first
element is greater than the second element:

def info 't ((<=): t -> t -> bool) (x:t) (y:t) : i64 =
if x <= y then if y <= x then 0 else -1
else 1

The following two functions tripit and tripadd are used for converting the classification of
elements into subsegments:

def tripit (x: i64) : (i64,i64,i64) =
if x < 0 then (1,0,0)
else if x > 0 then (0,0,1) else (0,1,0)

def tripadd (a1:i64,e1:i64,b1:i64) (a2,e2,b2) =

We can now define the function step that, besides from an ordering function, takes as arguments
(1) the array containing values and (2) an array of segments to be sorted. The function returns a
pair of a reordered array of values and a new array of segments to be sorted:

def step [n][m] 't ((<=): t -> t -> bool) (xs:*[n]t) (sgms:[m]sgm)
: (*[n]t,[]sgm) =
-- find a pivot for each segment
let pivots : []t = map (\sgm -> xs[sgm.start + sgm.sz/2]) sgms

-- find index into the segment that a value belongs to
let k = i64.sum (map (.sz) sgms)
let idxs = replicated_iota (map (.sz) sgms) :> [k]i64
let is = idxs_values sgms :> [k]i64

-- for each value, how does it compare to the pivot associated
-- with the segment?
let infos =

map2 (\idx i -> info (<=) xs[i] pivots[idx]) idxs is
let orders : [](i64,i64,i64) = map tripit infos

-- compute segment descriptor
let flags =

[true] ++ (map2 (!=) idxs (rotate (-1) idxs))[1:] :> [k]bool
(continues on next page)

11.5. Complex Flattening 107

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

-- compute partition sizes for each segment
let pszs =

segmented_reduce tripadd (0,0,0) flags orders :> [m](i64,i64,i64)

-- compute the new segments
let sgms' =

map2 (\(sgm:sgm) (a,e,b) -> [{start=sgm.start,sz=a},
{start=sgm.start+a+e,sz=b}]) sgms pszs

|> flatten
|> filter (\sgm -> sgm.sz > 1)

-- compute the new positions of the values in the present segments
let newpos : []i64 =
let where : [](i64,i64,i64) =

segmented_scan tripadd (0,0,0) flags orders
in map3 (\i (a,e,b) info ->

let (x,y,_) = pszs[i]
let s = sgms[i].start
in if info < 0 then s+a-1
else if info > 0 then s+b-1+x+y
else s+e-1+x) idxs where infos

let vs = map (\i -> xs[i]) is
let xs' = scatter xs newpos vs

The algorithm has best case work complexity 𝑂(𝑛) (when all elements are identical), worst case
work complexity 𝑂(𝑛2), and an average case work complexity of 𝑂(𝑛log𝑛). It has best depth
complexity 𝑂(1), worst depth complexity 𝑂(𝑛) and average depth complexity 𝑂(log𝑛).

108 Chapter 11. Irregular Flattening

Chapter 12
Conclusion

In this book, we have aimed at providing a practical guide to writing data-parallel programs in
Futhark. Futhark is quite an extensive language even though its semantics is pure. It does however
have limitations. In particular, Futhark does not currently support recursion and it has no built-in
support for algebraic datatypes. Support for some of these concepts are currently being investigated.

On the performance side, there are, of course, always room for improvements. In particular, a
number of low-level optimisations, such as register tiling, could turn out helpful for certain kinds
of applications. However, even with the current performance level, Futhark may turn out fruitful
for serious prototyping and quick time-to-market development.

The Futhark web site at http://futhark-lang.org contains a list of research papers, which will serve
as a suggestion for further reading.

109

http://futhark-lang.org

Parallel Programming in Futhark, Release 0.80

110 Chapter 12. Conclusion

Bibliography

[ABegotB+16] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Henglein,
Troels Henriksen, Maj-Britt Nordfang, and Cosmin E Oancea. Finpar: a parallel fi-
nancial benchmark. In ACM TACO. 2016.

[Ann18] Danil Annenkov. Adventures in Formalisation: Financial Contracts, Modules, and
Two-Level Type Theory. PhD thesis, Department of Computer Science, Faculty of
Science, University of Copenhagen, April 2018.

[Bir87] R. S. Bird. An Introduction to the Theory of Lists. In NATO Inst. on Logic of Progr.
and Calculi of Discrete Design, 5–42. 1987.

[Ble90] Guy E Blelloch. Vector models for data-parallel computing. Volume 75. MIT press
Cambridge, 1990.

[BHS+94] Guy E Blelloch, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a Portable Nested Data-Parallel Language. Journal of
parallel and distributed computing, 21(1):4–14, 1994.

[Ell03] Conal Elliott. Functional images. In The Fun of Programming, “Cornerstones
of Computing” series. Palgrave, March 2003. URL: http://conal.net/papers/
functional-images/.

[Els98] Martin Elsman. Polymorphic equality—no tags required. In Second International
Workshop on Types in Compilation (TIC'98). March 1998.

[Els99] Martin Elsman. Static interpretation of modules. In Procedings of Fourth Interna-
tional Conference on Functional Programming (ICFP'99), 208–219. ACM Press,
September 1999.

[Els05] Martin Elsman. Type-specialized serialization with sharing. In Sixth Symposium on
Trends in Functional Programming (TFP'05). September 2005.

[EHAO18] Martin Elsman, Troels Henriksen, Danil Annenkov, and Cosmin E. Oancea. Static
interpretation of higher-order modules in Futhark: functional GPU programming in
the large. Proc. ACM Program. Lang., 2(ICFP):97:1–97:30, July 2018. URL: http:
//doi.acm.org/10.1145/3236792, doi:10.1145/3236792.

111

http://conal.net/papers/functional-images/
http://conal.net/papers/functional-images/
http://doi.acm.org/10.1145/3236792
http://doi.acm.org/10.1145/3236792
https://doi.org/10.1145/3236792

Parallel Programming in Futhark, Release 0.80

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans-
actions of Computers, 21(9):948–960, September 1972.

[GHK+11] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana Schaa. Het-
erogeneous Computing with OpenCL. Morgan Kaufmann, September 2011. Second
Edition.

[Hen17] Troels Henriksen. Design and Implementation of the Futhark Programming Lan-
guage. PhD thesis, University of Copenhagen, Universitetsparken 5, DK-2100 Copen-
hagen, 11 2017.

[HDU+16] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin,
Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. APL on GPUs—a TAIL from
the past, scribbled in Futhark. In Proceedings of the 5th ACM SIGPLAN workshop on
Functional High-Performance Computing (FHPC'16). ACM, September 2016.

[HEO14] Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Size slicing: a hybrid ap-
proach to size inference in Futhark. In Proceedings of the 3rd ACM SIGPLAN work-
shop on Functional High-Performance Computing (FHPC'14), 31–42. ACM, 2014.

[HEO18] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. Modular acceleration:
tricky cases of functional high-performance computing. In Proceedings of the 7th
ACM SIGPLAN International Workshop on Functional High-Performance Comput-
ing, FHPC 2018. New York, NY, USA, 2018. ACM.

[HLO16] Troels Henriksen, Ken Friis Larsen, and Cosmin E Oancea. Design and GPGPU per-
formance of Futhark's redomap construct. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Program-
ming, 17–24. ACM, 2016.

[HO14] Troels Henriksen and Cosmin E Oancea. Bounds checking: an instance of hybrid
analysis. In Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (ARRAY'14), 88. ACM, 2014.

[HO13] Troels Henriksen and Cosmin Eugen Oancea. A T2 graph-reduction approach to
fusion. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional High-
Performance Computing (FHPC'13), 47–58. ACM, 2013.

[HSE+17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E.
Oancea. Futhark: purely functional GPU-programming with nested parallelism and
in-place array updates. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, 556–571. New
York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3062341.3062354,
doi:10.1145/3062341.3062354.

[HTEO19] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin E. Oancea. Incre-
mental flattening for nested data parallelism. In Proceedings of the 24th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP '19.
ACM, February 2019.

112 Bibliography

http://doi.acm.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354

Parallel Programming in Futhark, Release 0.80

[Hov18] Anders Kiel Hovgaard. Higher-order functions for a high-performance programming
language for GPUs. Master's thesis, Department of Computer Science, Faculty of Sci-
ence, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, May
2018.

[HHE18] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. High-performance de-
functionalization in Futhark. In Symposium on Trends in Functional Programming
(TFP'18). September 2018.

[Ken04] Andrew J. Kennedy. Functional pearl: pickler combinators. Jounal of Functional Pro-
gramming, 14(6):727–739, November 2004.

[LH17] Rasmus Wriedt Larsen and Troels Henriksen. Strategies for regular segmented re-
ductions on GPU. In Proceedings of the 6th ACM SIGPLAN International Work-
shop on Functional High-Performance Computing, FHPC 2017, 42–52. New
York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3122948.3122952,
doi:10.1145/3122948.3122952.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, April 1965.

[Moo75] Gordon E. Moore. Progress in Digital Integrated Electronics. In Technical Digest
1975, 11–13. IEEE, 1975. International Electron Devices Meeting.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with cuda. Queue, 6(2):40–53, March 2008. URL: http://doi.acm.org/10.
1145/1365490.1365500, doi:10.1145/1365490.1365500.

[Org16] Course Organizers. Algorithm Design: Parallel and Sequential. Carnegie Mellon
University, September 2016. Course Book Draft Edition. Course Taught Fall 2016
by Umut Acar and Robert Harper.

[PJ93] John Peterson and Mark Jones. Implementing type classes. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementation,
PLDI '93, 227–236. New York, NY, USA, 1993. ACM. URL: http://doi.acm.org/10.
1145/155090.155112, doi:10.1145/155090.155112.

[Sch80] Jacob T. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst.,
2(4):484–521, October 1980. URL: http://doi.acm.org/10.1145/357114.357116,
doi:10.1145/357114.357116.

[vN45] John von Neumann. First draft of a report on the EDVAC. Technical Report, Moore
School of Electrical Engineering, University of Pennsylvania, June 1945.

Bibliography 113

http://doi.acm.org/10.1145/3122948.3122952
https://doi.org/10.1145/3122948.3122952
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/155090.155112
http://doi.acm.org/10.1145/155090.155112
https://doi.org/10.1145/155090.155112
http://doi.acm.org/10.1145/357114.357116
https://doi.org/10.1145/357114.357116

	Preface
	Contributing to the Book
	Acknowledgments

	Introduction
	Structure of the Book

	The Futhark Language
	Basic Language Features
	Simple Expressions
	Top-Level Definitions
	Type abbreviations

	Array Operations
	Map
	Scan and Reduce
	Filtering

	Size Types
	Sizes and type abbreviations
	The causality restriction

	Records
	Tuples as a Special Case of Records

	Parametric Polymorphism
	Higher-Order Functions
	Causality and piping

	Sequential Loops
	In-Place Updates
	When To Use In-Place Updates

	Practical Matters
	Testing and Debugging
	Testing with futhark test
	External Data Files
	Automatically Generated Input
	Testing a Futhark Library

	Traces and Breakpoints

	Benchmarking
	Simple Measurements
	Multiple Measurements
	Using futhark bench

	Package Management
	Basic Concepts
	Installing Packages
	Importing Files from Dependencies
	Upgrading Dependencies

	When Things Go Wrong

	Modules
	Simple Modules
	Modules and files
	Module Types
	Module type refinement

	Parametric Modules

	Interoperability
	Calling Futhark from Python
	Calling Futhark from C
	Handling Awkward Futhark Types

	A Parallel Cost Model for Futhark Programs
	Futhark - the Language
	Futhark Type System
	Futhark Evaluation Semantics
	Work and Span
	Reduction by Contraction
	Determining Work and Span

	Radix-Sort by Contraction
	Radix-Sort in Futhark

	Counting Primes

	Fusion and List Homomorphisms
	Fusion
	Parallel Utility Functions
	Finding the Index of an Element in an Array
	Finding the Largest Element and its Index in an Array

	Radix Sort Revisited
	Finding the Longest Streak

	Regular Flattening
	Segmented Scan
	Finding the Longest Streak Using Segmented Scan

	Replicated Iota
	Segmented Replicate
	Segmented Iota
	Indexes to Flags
	Moderate Flattening
	Vectorisation
	Map-Map Nesting
	Map-Scan Nesting
	Map-Reduce Nesting
	Map-Iota Nesting
	Map-Replicate Nesting

	Pseudo-Random Numbers and Monte Carlo Sampling Methods
	Generating Pseudo-Random Numbers
	Parallel random numbers

	Low-Discrepancy Sequences

	Irregular Flattening
	Flattening by Expansion
	Drawing Lines
	Drawing Triangles
	Primes by Expansion
	Complex Flattening

	Conclusion
	Bibliography

